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Remote Agent Experiment Validation

EXTENDED ABSTRACT

Remote Agent (RA) is a model-based, reusable artificial

intelligence (AI) software system that enables goal-based

spacecraft commanding and robust fault recovery. RA was
flight validated during an experiment on board of DSI
between May 17 th and May 21 th, 1999.

Technology Overview

RA can operate at different levels of autonomy, allowing

ground operators to interact with the spacecraft with
immediate commands to the flight software, if needed.
However, one of the most unique characteristics of RA, and

a main difference with traditional spacecraft commanding,
is that ground operators can communicate with RA using

goals (e.g. "During the next week take pictures of the
following asteroids and thrust 90% of the time") rather than

with detailed sequences of timed commands. RA determines
a plan of action that achieves those goals and carries out that

plan by issuing commands to the spacecraft. Actions are
represented with tasks that are decomposed on the fly into
more detailed tasks and, eventually, into commands to the

underlying flight software. When discrepancies are detected
between the desired state and the actual state, RA detects,

interprets and responds to the anomaly in real time. More
serious anomalies can be addressed with longer response

times, by generating a new plan of action while the
spacecraft is kept idle in a safe configuration. When the new
plan is generated, the spacecraft is taken out of the safe

configuration and execution resumes normally.

RA differentiates itself from traditional flight software
because it is model-based. In traditional software programs

and expert systems, the programmer decides what the result
of a program should be and writes down instructions or

rules that attempt to achieve those results. The computer
simply executes the instructions or fires the rules with no
knowledge of what the intended result was or how it is

achieving it. Each component of RA instead operates on
models, general descriptions of the behavior and structure of

the spacecraft it is controlling. Each RA component solves
problems by accepting goals and using appropriate
reasoning algorithms on its models to assemble a solution

that achieves the goals. The reasoning algorithms are
general-purpose and remain unchanged across different

deployments of RA. For different applications, the parts that
change are the models and, possibly, the problem-solving

control knowledge needed by some RA modules to tune
performance.

Remote Agent Component Technologies

Remote Agent integrates three separate technologies: an on-

board planner-scheduler (PS), a robust plan execution

system (EXEC), and the Mode Identification and Recovery
(MIR) system for model-based fault diagnosis and recovery.

These component technologies are described briefly below.

PS--PS generates the plans that RA uses to control the
spacecraft. Given the initial spacecraft state and a set of

goals, PS generates a set of synchronized high-level tasks
that, once executed, will achieve the goals. PS consists of a

heuristic chronological-backtracking search engine

operating over a constraint-based temporal database. PS
begins with an incomplete plan and expands it into a

complete plan by posting additional constraints in the
database. These constraints originate either from Ground,
which imposes them directly on the goals, or from

constraint templates (e.g. the camera must be pointed at an
asteroid to take a picture of it) stored in a model of the

spacecraft. PS queries domain-specific planning experts
(specialized software modules such as Deep Space One's

navigation system) to access information that is not in its
model.

EXEC--EXEC is a reactive, goal-achieving, control system
that is responsible for:

• Requesting and executing plans from the planner.

• Requesting/Executing failure recoveries from MIR

• Executing goals and commands from human

operators.

• Managing system resources.

• Configuring system devices.

• System-level fault protection.

• Achieving and maintaining safe-modes as necessary.

EXEC is goal-oriented rather than command-oriented. We
define a goal as a state of the system being controlled that
must be maintained for a specified length of time. As a

simple example, consider the goal: keep device A on from
time x to time y. If EXEC were to detect that device A is off
during that period, it would perform all the commands
necessary to turn it back on." EXEC controls multiple

processes in order to coordinate the simultaneous execution

of multiple goals that are often inter-dependent. In order to
execute each goal, EXEC uses a model-based approach to
create a complex command procedure designed to robustly

achieve the goal.

MIR--The MIR inference engine provides mode
identification (diagnosis) and mode reconfiguration

(recovery) functionality. To track the state of each
component (called a mode) in the spacecraft MIR

eavesdrops on commands that are sent to the spacecraft
hardware by EXEC. As each command is executed, MIR
receives observations from spacecraft's sensors, abstracted

by monitors in the spacecraft's control software. MIR
combines these commands and observations with

declarative models of the spacecraft components to
determine the current state of the system and report it to



EXEC.If failures occur, MIR uses the same model to find a

repair or workaround that allows the plan to continue
execution.

The key idea underlying model-based diagnosis is that a

combination of component modes is a possible description
of the current overall state of the spacecraft only if the set of
models associated with these modes is consistent with the

observed sensor values. This method does not require that

all aspects of the spacecraft state be directly observable,

providing an elegant solution to the problem of limited
observability.

Risks

RA is flight software and as such poses the same kind of
risks posed by conventional flight software.

The autonomous behavior implemented by RA is not

qualitatively different from that displayed by conventional

fault protection or attitude control. In all cases, the
spacecraft is commanded on the basis of current state
information rather than by direct operator commands. The

behavior of RA can be predicted, within an envelope, just as
the behavior of fault protection or attitude control can be

predicted within certain bounds. Confidence in the RA's

responses can be obtained through testing, just as
confidence in fault protection or attitude control is obtained
now.

A risk addressed by the experiment concerns the integration

and testing of the technology. RA in a novel integration of

three technologies and their application to spacecraft is also
new. For this reason there was no prior experience on

development and validation methodologies for such a
system. Another risk had to do with the integration of the AI
technologies of RA, based on general-purpose search

algorithms, together with real-time control software on a

flight processor.

Validation Objectives

The first validation objective was to demonstrate RA's
ability to autonomously operate a spacecraft with
communication from ground limited to few high-level goals.

This translated into specific objectives for PS, EXEC and
MIR. The second validation objective was to show that RAt •
could be commanded with different levels of autonomy.

This meant supporting all of the possible operation modes:

using EXEC to run a traditional sequence of commands;

preparing a plan on the ground and uplinking it to the
spacecraft for execution; and providing closed-loop

planning and execution on-board the spacecraft. The final
validation objective was the first formulation of a

development and testing plan for an autonomous flight

software system.

Test Program and Results

The Remote Agent Experiment (RAX) consisted of using

the RA technology to operate the DSI spacecraft for
several days. We developed a series of operations scenario
based on DSI actfve cruise mode. In these scenarios RAX

commanded a subset of the spacecraft subsystems: Ion

Propulsion System (IPS), Miniature Integrated Camera

and Spectrometer (MICAS), Autonomous Navigation
(NAV), Attitude Control System (ACS) and a series of

power switches. The goals in the main scenario were to
execute an IPS thrust arc, acquire optical navigation

images as requested by the autonomous navigator, and
respond to several simulated faults. The faults included
minor ones that could be responded to without disrupting

the current plan, and more serious faults that required

generating a new plan to achieve the remaining goals. We
adopted a continuous integration approach in which new
features or bug fixes were integrated in new releases only

after the integrated system could successfully run the
reference scenarios on all available testbeds. We also

conducted an extensive formal testing program, separate

from the software development process. Testing was
distributed on several different platforms of different

speeds, level of fidelity and availability to the RA team.
Test cases were targeted to the most available testbed that
could validate them with the reasonable expectation that

the test result would hold on higher fidelity testbeds.

In spite of a couple of bugs that occurred during the flight
experiment, RA successfully demonstrated 100% of its

flight validation objectives.

Applicability to future NASA missions

The Remote Agent technology is applicable to any future
NASA mission that desires or requires autonomous

operations. The RA reasoning engines can be used as-is on
future missions. New domain models would be required for

each mission.

\
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Remote Agent Experiment Fact Sheet

Point of Contact

Douglas E. Bernard

Avionic Systems Engineering

Jet Propulsion Laboratory

I-818-354-2597

douglas.e, bernard @j pl. nasa. gov

Models of

Spacecraft,

Flight rules

Retnote Agent

Estimated Spacecraft
State and

Plan Database

Remote Agent

Reasoning Engines

Planner/

Schedule=

Smart Executive

State Estimator/

Recovery Expert

(Livingstone)

Goals, high or
low-level commands

Observations

and Command

Responses [

Low-level

Commands

Spacecraft

Flight Software
and Hardware

Systems

Ground Control

Validation Objectives

_ .Initiate and generate flexible plans on-board
•Reject low-priority, unachievable goals

_ .Execute plans generated both on-board and from Ground•Confirm execution of commands

_ .Demonstrate model-based failure detection and recovery• Maintain required spacecraft states in the face of failures

_ .Re-plan following a failure
•Generate back-to-hack plans

_/ .Modify mission goals from Ground

_ .Execute low-level commands from Ground
•Update estimated spacecraft state database from Ground

Capabilities

•Robust Goal-based commanding

- Planner expands high-level goals into flexible plans

- Executive decomposes plans into low-level

spacecraft commands and monitors that the states
commanded to are achieved and maintained

• Fail-operational model-based fault recovery

-Livingstone identifies faults and suggests recoveries

that the Executive uses to continue plan execution

- If necessary, Executive requests the Planner to

generate a new plan in light of failure

Applicabilit_ to future missions

Remote Agent technologies are generally applicable to

mission that benefit from highly autonomous operation

and are currently being applied to prototypes of future

NASA missions including a space-based interferometer

and an in-situ propellant production plant.



THE REMOTE AGENT

Remote Agent is a model-based, reusable artificial
intelligence (Ai) software system that enables goal-based

spacecraft commanding and robust fault recovery. This

report describes the Remote Agent technology, its
development and test history and the DSI flight experiment

in which Remote Agent was validated. Whenever feasible,

this report attempts to give guidance on how Remote Agent
can be fruitfully employed in future science missions. We

also highlight further technology developments and

operational applications of the technologies that we are
currently pursuing.

Technology Overview

The Remote Agent (RA) integrates three separate Artificial
Intelligence technologies: automated planning and

scheduling, robust multi-threaded execution, and model-
based fault diagnosis and recovery.

Figure l:Remote Agent architecture

Remote Agent Architecture--The RA architecture and its
relation to flight software are shown in Figure 1. Viewed as
a black-box, RA issues commands to real-time execution

flight software (FSW) to modify spacecraft state, and
receives data from the spacecraft through a set of monitors
that filter and discretize sensor values. The RA itself is

comprised of three main components: a Planner/Scheduler
(PS), a Smart Executive (EXEC), and Livingstone, a Mode

Identification and Reconfiguration module also known as
MIR. An additional component, strictly related with PS, is

the Mission Manager (MM). In addition, the RA team
provided a clean interface to the rest of FSW via the RAX

Manager (RAXM), which mediated all communication
between RA and FSW and was included from the outset in

the FSW design. RAXM provided a messaging conduit
between RA and the rest of FSW including interfaces to the

Planning Experts, the Monitors and to the Real Time
Sequencer. Using such a mechanism allowed RA to be
cleanly bundled on top of FSW much later in flight and yet

also allowed a clear methodology for testing and validating

the RA software on the ground.

We now describe the main functionalities provided by RA

and how each individual RA component participates in the

overall picture. We will do so by giving concrete examples
of commanding and operations relative to DSI.

As we will discuss later. RA can operate at different levels

of autonomy, allowing ground operators to interact with the
spacecraft with immediate commands to FSW, if needed.

However, one of the most unique characteristics of RA, and
a main difference with traditional spacecraft commanding,

is that ground operators can communicate with RA at the

goal level rather than having to formulate detailed
sequences of timed commands. Goals are stored in MM in a

mission profile covering an extended period of time. In
principle, a mission profile could contain all goals for a
mission, requiring no further uplink from ground. More

realistically, mission operations will want to change goals

(e.g., the schedule of communications with DSN can be
modified on a week by week basis). This can be easily

accomplished by uplinking commands to edit the mission
profile. Goals typically contain very little detail of how they
should be achieved. For example, for the DSI Remote

Agent Experiment the only goals in the mission profile were
"Perform AutoNAV orbit determination (OD) activities for

I hour every day" and "Thrust the IPS engine for at most 12
hours".

To translate high,level goals into a stream of commands to

flight software, RA follows a two-step process. In the first
step, MM selects goals for the next commanding horizon

(typically covering several days) and sends them to PS. PS
uses its model of the spacecraft to determine which detailed
tasks should be selected and scheduled to achieve the goals.

For example, in order to perform an OD PS determines from
the model that pictures of beacon asteroids need to be taken.
In order to select these asteroids, the model instructs PS to

interrogate the AutoNAV software as a planning expert. In
general, PS will rely on several specialized services
provided by software modules external to RA. In DSI both
AutoNAV and ACS provided information to PS that was

incorporated into plans. Going back to our example,

observing an asteroid translates, according to the PS model,
into taking a series of images of it with the Miniature
Integrated Camera And Spectrometer (MICAS). Therefore
PS schedules a "MICAS take OPNAV images" task.
Moreover, the model instructs PS that while images of an

asteroid are taken, the attitude of the spacecraft must be

compatible with the MICAS camera pointing at it. If this is
not the case, the PS model instructs PS to schedule an

appropriate turn changing the attitude from the previous one
to the desired one.

The brief example above points out another fundamental
characteristic of all RA components: their fundamental

reliance on explicit, declarative models of the spacecraft.
Although their level of detail varies between the different
components, RA models tend to be fairly abstract and tend

to focus on system level interactions rather than on the

\
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detailoperationof individualsubsystemsor components.
Thishastwoadvantages.Firstly,it providesa methodto
capturesystem level knowledge in a form that is directly
usable to command a spacecraft, without having to go

through the costly and error prone translation of system

requirements into flight software. In the traditional
approach, system requirements are at best translated into

flight rules that can be used to check the validity of

command sequences but not to generate them in the first
place. Secondly, more abstract models are less susceptible

to changes when a detailed understanding of the behavior of
each subsystem is gained during spacecraft development.

Although they need to be adjusted to the new finding, the
abstract models usually remain structurally unchanged, and

so remain the synthesis procedures that RA component use
to generate command loads.

Once PS has generated a plan for the next commanding

horizon, EXEC receives it and incorporates it into the
queues of tasks that it is currently executing. Tasks

generated by PS tend to be fairly abstract. EXEC's
responsibility is to synchronize the parallel execution of the
plan tasks according to the specifications contained in the

plan, and to further decompose each task, one at a time, into
more detailed steps. This task decomposition eventually
results into individual commands being sent, one at a time,

to FSW. For example, the abstract task "MICAS take
OPNAV images" is decomposed into commanding MICAS

to take a number of snapshots while checking that MICAS
is kept "ON" during the entire process.

Besides its goal-directed commanding and model-centered
approaches, RA puts particular emphasis on robustness of
execution and flexibility of response to faults. The mode

identification (MI) component of MIR observes EXEC
issuing commands, receives sensor observations from
monitors, and uses model-based inference to deduce the

state of the spacecraft and provide feedback to EXEC. The
other component of MIR, mode reconfiguration (MR),

serves as a recovery expert, taking as input a set of EXEC
constraints to be established or maintained, and

recommends a recovery action to EXEC that will achieve

those constraints. MIR provides both the MI and MR
functions using a single core algorithm and a single
declarative model.

Fault protection in RA happens at two different levels.

• Low-level fault protection loop: This involves EXEC and
MIR in the context of executing a single PS-generated

task. Suppose that EXEC is commanding MICAS power
on in order to ensure that MICAS is on during the

"MICAS take OPNAV images" PS task. It does so by
sending an appropriate command to the power driver. MI

observes the command and, on the basis of its previous
state estimate and its models, predicts the likely next state

in which the system will be. This prediction provides a
qualitative description of the sensor readings MIR should
observe from the spacecraft (e.g. the switch sensor and

current sensor should be consistent with MICAS being
on). If the expected observations are not received, MI

uses its model to hypothesize the most likely cause of the
unexpected observations in terms of failures of the

spacecraft's components. The infi_rmation about the new

state of the spacecraft hardware is sent to EXEC, which
now asks MIR for an action to correct the problem. MIR

now activates MR, which, using the same model,

determines the least-cost system state that satisfies
EXEC's request and one that is reachable from the fault

mode. MIR then gives EXEC the first action in a possible

sequence that will take the system to that state. Such a
recovery might involve resetting a device, attempting a

command again, or a complex reconfiguration of the

spacecraft to enable a functionally redundant system.
EXEC executes the recovery action, under the watchful
eye of MIR, and receives further actions from MIR if

needed by the recovery process. When the recovery is

complete, EXEC continues executing the PS task in a
nominal fashion. Note that during this entire process the

original PS task is still active and in a "nominal" state.
This depends on the time allocated to the task including

enough slack to tolerate variations during execution that
can be handled by low-level fault protection.

• High-level fault protection loop: this involves EXEC and
PS. Assume that all recovery actions suggested by MR

fail and no more recovery actions are available. MIR
therefore infers that MICAS is unusable and
communicates this to EXEC. This means that there is no

way to execute a command necessary for the success of

the "MICAS take OPNAV images" task. Moreover, the
assumed conditions for other tasks that may be present in
the plan in the future may now be invalidated. Therefore
EXEC terminates task execution with a failure, discards

the rest of the plan and immediately commands the
spacecraft to enter an appropriate "RA standby" mode. t It

then activates PS by communicating to it the current state
of the spacecraft and asks for a new plan. After receiving
the initial state from EXEC and the goals from MM, PS

generates a new plan that achieve the goals as best as

possible within the new, degraded configuration of the
spacecraft. When the plan is ready, PS sends it to EXEC.
EXEC now exits the "RA standby" state and resumes
normal operations by starting the execution of the new

plan.

With the above capabilities, RA allows implementation of

fail-operational behaviors under a much broader range than
is possible in traditional spacecraft commanding.
Traditionally only critical sequences (e.g., Saturn Orbit

Insertion for Cassini) are designed to tolerate a large number
of faults without requiring "sating" of the spacecraft. This

depends on the cost of analysis and implementation of these
sequences. Therefore, in less critical mission phases, a fault

event usually requires the intervention of the ground
operations team to correct it. With RA the cost of

i Note that this is a standby situation only from the perspective of
RA. From the point of view of FSW, "RA standby" mode is not a
fault mode and does not require the intervention of FSW fault
protection.



implementing these scenarios is significantly reduced,

making possible an increase of mission productivity and a

reduction of cost of operations.

Detailed Validation Objectives

Validation of a technology with the complexity and the

pervasive systemic impact of RA required attention to
several different aspects and dimensions.

The first and most obvious objective was to validate the fact
that RA could autonomously command a system as complex

as a spacecraft for an extended period of time. This
translated into the following list of objectives for each RA

component.

PS/MM

Level

I

Ground System

Prepare real-time
commands

On-Board PS

None

Define goals

On-Board EXEC

None (executed
w/o EXEC

involvement)

Prepare sequence None Execute

.,u_quence

Prepare plan. upload to None Execute plan:

EXEC as script "Scripted mode"

Prepare plan. upload to Confirm and pass Execute plan;

planner as goals thin the planner "'Planner Mode"

Prepare plan including Complete the Execute plan

some unexpanded goals plan

Prepare plan Execute plan

Table 1: Autonomy levels of RA

• generate plans on-board the spacecraft

• reject low-priority unachievable goals

• replan following a simulated failure

• enable modification of mission goals from ground.

EXEC

• provide a low-level commanding interface

• initiate on-board planning

• execute plans generated both on-board and on the ground

• recognize and respond to plan failure

• maintain required properties in the face of failures.

MIR

• confirm executive command execution

• demonstrate model-based failure detection, isolation, and

recovery;

• demonstrate ability to update MIR state via ground
commands.

Other validation objectives addressed the impact of the
introduction of RA into a "traditional" spacecraft software
architecture. From the outset RA was designed to work in

conjunction with existing FSW modules and not to replace
them. As a result the fidelity of control provided by RA

depends on the scope and detail of the models of the

spacecraft it has. The challenge was to demonstrate that
such cooperative arrangement with FSW could indeed be
carried out. This consisted in modeling within RA only a

specific set of spacecraft subsystems and allowing
conventional techniques of FSW control to deal with the

remaining control modes of the craft. While there are no
software or architectural limitations which would disallow

RA to command all subsystems for an extended period of
time, the fielding of RA on DS 1 was also meant to provide a
credible demonstration of the fact that autonomy concepts

could be applied within a well defined scope.

Even within the scope of the autonomy demonstration, it

was important to show that adopting RA was not an "all or
nothing" proposition and that RA could be commanded with
different levels of autonomous operations. Table 1 shows

the possible RA autonomy levels, all the way from having
EXEC issuing low-level commands from a low-level script

analogous to a traditional command (autonomy level 2), to

preparing a plan on the ground and uplinking it to the
spacecraft for execution (autonomy level 3) and finally to
providing closed-loop planning and execution on the

spacecraft (autonomy level 6). The DS! autonomy
experiment was designed from the outset to start with level
3 as a confidence building measure and then to migrate to
level 6.

The final set of validation objectives involved the

development process for autonomy software. This covered a

number of separate items:

• integration of RA with the DSI FSW, a large and

complex system in itself written in a language (C)
different from RA (Lisp);

• adaptation of RA models and scenarios to reflect

operational constraints imposed by the flight team even
late in the development process;

• achievement of high-level of confidence by the DSI
spacecraft team by going through a rigorous test regimen

dictated by the team on high fidelity testbeds.

We will discuss the level of achievement of these validation

objectives in the section on the Remote Agent Experiment.

Performance Envelope

Note that these performance and resource figures refer to

RA as flown on Deep Space ! in 1999 in Lisp. Each of the
RA engines has been or is being re-architected and ported to

C or C++. These new systems may exhibit significantly

different performance characteristics.

6



• Memory: 32 Mbytes memory peak, 20 avg.
• CPU:

- RAX ran at priority level just below that of DSI
sequencer (very low).

- 20% of CPU when planner is idle (only EXEC and

MIR are running).

- 45% of CPU while planner is running (PS, EXEC,

and MIR all running).

• Time to generate plans depends on plan complexity.

RAX plans took 50 to 90 minutes to generate.

• Telemetry: 10 bits per second, average.

This includes notification as each activity in the plan is
executed, current diagnosis for each device monitored

by MIR, and summary of the planner's plan generation
progress. Similar telemetry would be needed for future
science missions.

• File space: 140 KB for support files, plus

approximately 100 KB per stored plan, depending on
plan complexity (proportional to number of activities in

the plan). Compressed binary executable was 4MB. At
most one plan needs to be stored, though all plans were
stored during RAX for validation purposes. RAX also

generated a I MB log.

Technology Details

RA consists of general-purpose reasoning engines, and
mission-specific domain models. The engines make
decisions and command the spacecraft based on the

knowledge in the models. This section describes the details
of the reasoning engines and how they interact. The DS1

domain models developed for the flight experiment will be
discussed in the flight experiment section.

Planner/Scheduler--PS provides the core of the high-level
commanding capability of RAX. Given an initial,
incomplete plan containing the initial spacecraft state and

goals, PS generates a set of synchronized high-level
activities that, once executed, will achieve the goals. In the
spacecraft domain planning and scheduling aspects of the

problem need to be tightly integrated. The planner needs to
recursively select and schedule appropriate activities to
achieve mission goals and any other subgoals generated by

these activities. It also needs to synchronize activities and
allocate global resources over time (e.g., power and data

storage capacity). Subgoals may also be generated due to
limited availability of resources over time. For example, it
may be preferable to keep scientific instruments on as long

as possible (to maximize the amount of science gathered).
However limited power availability may force a temporary
instrument shutdown when other more mission-critical

subsystems need to be functioning. In this case the

allocation of power to critical subsystems (the main result of
a scheduling step) generates the subgoal "instrument must

be off" (which requires the application of a planning step).
PS is able to tune the order in which decisions are made to

the characteristics of the domain by considering the
consequences of action planning and resource scheduling
simultaneously. This helps keep the search complexity

under control. This is a significant difference with respect to

classical approaches both in Artificial Intelligence and

Operations Research where action planning and resource
scheduling are typically addressed in two sequential

problem-solving stages, often by distinct software systems
(see [181).

Another important distinction between PS and other

classical approaches to planning is that besides activities,

the planner also "'schedules" the occurrence of states and
conditions. Such states and conditions may need to be
monitored to ensure that, for example, the spacecraft is

vibrationally quiet when high stability pointing is required.
These states can also consume resources and have finite

durations and, therefore, have very similar characteristics to

other activities in the plan. PS explicitly acknowledges this

similarity by using a unifying conceptual primitive, the
token, to represent both actions and states that occur over
time intervals of finite extension. More details with

examples of the semantics of a token are given further along
in this section.

PS consists of a heuristic search engine that deals with

incomplete or partial plans. Since the plans explicitly
represent time in a metric fashion, the planner makes use of

a temporal database. As with most causal planners, PS
begins with an incomplete plan and attempts to expand it

into a complete plan by posting additional constraints in the
database.

These constraints originate from the goals and from

constraint templates stored in a domain model of the
spacecraft. The temporal database and the facilities for

defining and accessing model information during search are
provided by the Heuristic Scheduling Testbed System
(HSTS). The planning engine searches the space of possible

plans for one that satisfies the constraints and achieves the
goals. The action definitions determine the space of plans.

The constraints determine which of these plans are legal,
and heavily prune the search space. The heuristics guide the
search in order to increase the number of plans that can be
found within the time allocated for planning. Figure 2
describes the PS architecture. Additional details on the

planner algorithm and its correctness can be found in [ l I ].

The model describes the set of actions, how goals

decompose into actions, the constraints among actions, and
resource utilization by the actions. For instance, the model

will encode constraints such as "do not take MICAS images
while thrusting" or "ensure that the spacecraft does not slew
when within a DSN communication window". These

constraints are encoded in a stylized and declarative form

called the Domain Description Language (DDL).
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Figure 2: Planner/Scheduler Architecture.

(Define_Compatibility

;; compats on SEP_Thrusting

(SEP_Thrusting ?heading ?level ?duration)

:compatibility_spec

(AND

(equal (DELTA MULTIPLE (Power) (+ 2416
Used)))

(contained_by (Constant_Pointing

?heading))

(met_by (SEP_Standby))

(meets (SEP_Standby)))

)

(Define_Compatibility

;; Transitional Pointing

(Transitional_Pointing ?from ?to ?legal)

:parameter_functions

(?_duration <- APE_Slew_Duration (?from

?to ?_start_time_))

(?_legal <- APE Slew_Legality (?from ?to

?_start_time_))

:compatibility_spec

(AND

(met_by (ConstantPointing ?from))

(meets (Constant_Pointing ?to))))

(Define_Compatibility

;; Constant Pointing

(Constant_Pointing ?target)

:compatibility_spec

(AND

(met_by (Transitional Pointing * ?target

LEGAL))

(meets (Constant_Pointing ?target *

LEGAL)))

Figure 3: Temporal Constraints in DDL

In conventional modes of writing flight software, the
constraints in the domain are mixed with the control

information. In the model-based approach of RA, the
domain model is a distinct entity which encodes the mission

specific flight rules. This means that (in the case of PS) not

only are the core engines (the HSTS Temporal Database
(TDB) and the Search Engine) reusable across missions, but
that the model can be manipulated independently of any

other piece of the flight code (note that since the heuristics
search control information is model dependant, this module

would be impacted also). In addition, the richness of the

representation and the declarative form of DDL ensures that
mission/systems engineers can have a substantially easier

job of understanding and verifying the implementation of
the flight rules in RA than would have been possible in

conventional FSW. These are some of the advantages that

RA brings to a mission.

Figure 4: A Plan fragment formed by a DDL model

Each subsystem in the model is represented in the PS
database as a set of dynamic state variables whose value is
tracked over time. Timelines are treated as instantiations of
state variables and are used interchangeably with state
variables in this report. Each dynamic state variable can
assume one or more values. A token is associated with a

value of a state variable occurring over a finite time interval.
Each value has one or more associated compatibilities, i.e.,

patterns of constraints between tokens. A legal plan will
contain a token of a given value only if all temporal
constraints in its compatibilities are satisfied by other tokens
in the plan. Figure 3 shows an example of a set of
compatibilities with temporal constraints.

The first compatibility indicates that the master token
(which is at the head of the compatibility), is

SEP_Thrusting (when the Solar Electric Propulsion engine
is producing thrust), 2 must be immediately preceded and

followed by a SEP_Standby token (when the SEP engine is
in a standby mode but has not been completely shut off),

and it must be temporally contained by a constant pointing
token, and the complete thrusting activity requires 2416

Watts of power. The Constant_Pointing token implies that
the spacecraft is in a steady state aiming its camera towards
a fixed target in space. Transitional_Pointing tokens
describe an activity when the spacecraft slews. Figure 4

gives a visual rendering of these compatibilities.

The timeline approach to modeling is also driven by strong
software engineering principles. In a complex domain with
different individuals and organizations with varying

expertise, timelines provide disparate views of the same
domain model across organizational boundaries. For

2 Solar Electric Propulsion (SEP) is synonymous with IPS.



instancethegroundteammight want to own and access

timelines relating to communication coverage and when
DSN access is available, while the attitude control team

might want to place high-level goals on the attitude
timeline.

We identify four distinct kinds of state variables. A goal

timeline will contain the sequence of high-level goals that
the spacecraft can satisfy (e.g., the Navigate goal described

before). Goal timelines can be filled either by ground

operators or by on-board planning experts seen by PS as
goal generators. For example, in order to generate the

portion of the plan that commands the IPS engine, PS
interrogates NAV, which returns two types of goals: the
total accumulated time for the scheduling horizon and the

thrusting profile to be followed. These two types of
information are laid down on separate goal timelines.

Expected device health information over time is tracked by
health timelines. The expected profile is communicated by

EXEC to PS in the initial spacecraft state. EXEC can
communicate that the health of a device has changed even if
no fault has occurred. Another kind of state variable is an

internal timeline. These are only used by the planner to

internally organize goal dependencies and subgoaling.
Finally, an executable state variable corresponds to tasks

that will be actually tracked and executed by EXEC.

The RAX PS treats all timelines and tokens within a simple,

unified search algorithm. This has advantages. The ground
team could force certain behaviors of the spacecraft by

including in the mission profile explicit tokens on
executable timelines. The additional tokens will be treated

by PS as goals, will be checked against the internal PS
model and missing supporting tasks will be automatically
expanded to create a overall consistent plan. This will

greatly facilitate the work of the ground team. For DSI
such models were understandably more comprehensive and
complex with more timelines, tokens and compatibilities

between differing token types, and required careful
consideration during modeling to ensure interactions
between timelines do not result in unanticipated and harmful

behaviors generated by the planner.

When a science mission wants to fly the RA planner, the

primary set of tasks needed to adapt it to the mission will be
to:

perform knowledge acquisition to determine all the

spacecraft flight rules.

• encode these flight rules in the DDL model of the
spacecraft.

• design the search control heuristics that will be needed
to ensure that the planner is able to produce a valid

plan within specified resource (time, CPU) bounds.

Note that we do not intend to suggest that models can be or
ought to be built in an all or nothing fashion. On the

contrary we strongly believe that the process of coming up
with a viable plan which encapsulates all the flight rules in

the domain is in the incrementally of the process (you "build

some and test some").

As mentioned previously since the search engine would not
need to be adapted but reused, the mission will save costs in

revalidating the control system and can confine itself to

building and validating the model and search control
heuristics. Efforts are underway at NASA ARC to

implement automated tools which will ensure that full

coverage of the behaviors anticipated by the models (and
none other), is simulated during the modeling process.
Additional efforts are also underway to automatically

generate the heuristics from a given model of the domain.
This will further allow mission designers and systems staff
to build robust and complex models on their own without

relying on the AI technologists themselves.

Additional details about the planner can be found in [61, [7],

[8], [1 1], [12] and [13].

Executive--The Smart Executive (EXEC) is a multi-

threaded, reactive commanding system. EXEC is

responsible for sending the appropriate commands to the
various flight systems it is managing. EXEC can replace the
traditional spacecraft sequencer or it can be used in

conjunction with a traditional sequencer to command a
complex subsystem, e.g., interferometer.

EXEC is a multi-threaded process that is capable of

asynchronously executing commands in parallel. In
addition to the capabilities of a traditional sequencer, EXEC

is capable of:

• Simultaneously achieving and maintaining multiple
goals, i.e., system states, by monitoring the success of
commands it issues and reactively re-achieving states
that are lost.

• Conditional sequencing. Commands can be dependent
on conditions that occur at execution time.

• Event-driven commanding, as opposed to traditional

sequencers that are time-driven. For example, taking a
sequence of pictures based on the results of monitoring

a range sensor.

• High-level commanding and run-time task expansion.
EXEC provides a rich procedural language, Execution
Support Language (ESL) [11 in which spacecraft
software/model developers define how complex

activities are broken up into simpler ones. A procedure
can specify multiple alternate methods for goal
achievement to increase robustness.

• Sequence recovery. In the event that a command in an
executing sequence fails, EXEC suspends execution of

the failed sequence and attempts a recovery, either by

executing a pre-specified recovery sequence such as
reissuing the command or consulting a recovery expert,
e.g., MIR. Once the desired state of the failed
command is achieved, the suspended sequence is
restarted.
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Temporally-flexiblesequence(orplan)execution.In
ordertodecreasetheprobabilityof asequencetailing,
time rangescan be specifiedfor executingand
achievingthedesiredstateforeachcommand.

ResourceManagement.As a multi-threadedsystem,
EXECcanworkon multipletaskssimultaneously.
Thesetasksmaycompetefor systemresourceswithin
theconstraintsnotalreadyresolvedbygroundor the
planner. EXEC managesabstractresourcesby
monitoringresourceavailabilityandusage,allocating
resourcesto taskswhenavailable,makingtaskswait
untiltheirresourcesareavailable,andsuspendingor
abortingtasksif resourcesbecomeunavailabledueto
failures(suchasadevicebreaking).SeeIll and[2]for
amoredetaileddiscussion.

Figure5illustrateskeyfunctionsofEXEC.
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Figure 5: An Overview of the Remote Agent Executive

EXEC achieves multiple tasks sending the appropriate
control commands (decomposed from high-level
commands) to the flight software. The tasks also lock

properties that need to be maintained. For example, if a task
commands a switch ON, the switch property will be locked
ON. Monitors (and MIR) determine if it is consistent to
believe that the switch is ON. Since EXEC stores this state
in its state database should the inferred state of the switch

change, the database will be updated and an event created

signaling a change. If the signaled event violates a property
lock, an EXEC property thread interrupts those tasks that
subscribed to that property lock. It will then attempt to
achieve the state of the switch being ON using its own

recovery mechanism or by consulting a recovery expert,
e.g., MR. If the switch cannot be turned ON in time, a hard-
deadline that is being tracked is missed, so EXEC

commands the spacecraft into a safe, wait state while it
requests a new plan from the planner that takes into account
that the switch cannot be turned ON.

Recoveries may be as simple as sending another command
to turn a switch ON, or may be complex, such as when

multiple subsystems are tightly coupled. For example,

consider two coupled DSI subsystems: the engine gimbal
and the solar panel gimbal. A gimbal enables the engine

nozzle to be rotated to point in various directions without

changing the spacecraft orientation. A separate gimbal

system enables the solar panels to be independently rotated
to track the sun. In DS I, both sets of gimbals communicate

with the main computer via a common gimbal drive
electronics (GDE) board. If either system experiences a
communications failure, one way to reset the system is to

power-cycle (turn on and off) the GDE. However, resetting
the GDE to fix one system also resets the communication to

the other system. In particular, resetting the engine gimbal,
to fix an engine problem, causes temporary loss of control

of the solar panels. Thus, fixing one problem can cause new

problems. To avoid this, the recovery system needs to take
into account global constraints from the nominal schedule
execution, rather than just making local fixes in an
incremental fashion, and the recovery itself may be a

sophisticated plan involving operations on many
subsystems.

Domain-code developers use ESL to create high-level
commands that EXEC decomposes and executes at run-time

depending on the spacecraft state. The following ESL code

in Figure 6 illustrates multiple methods for achieving IPS
thrusting at a desired level depending on the current state of
execution. If IPS is in standby mode, ACS is commanded to

change control modes only after the desired IPS thrust level
has been confirmed.

(to-ach£mvm (ZPS-TEIRUSTZNG £ps level)

( (£ps-£s-£n-standlb¥-state-p :Lps)

(Jtoq'uonco (ach:Love (power-on? 'oga-.-_))

( command-with- conf irmat £on

(send--:Lps--set--thrult--level level) )

( command-w£th- conf £ rmat ion

( • end--ac s-change--cont rol-mode
: ac s--tvc-_ode ) ) ) )

( ( ips-in-thrusting- state-p ip s )
( command-with- conf irmat £on

( 8ond--4ps.-.chango--t:hx'ust:--lovol lovol ) ) )

(t (fa:Ll -£ps-ach£ove-thrust£ng) ) )

Figure 6: Multiple methods in ESL for achieving thrust.

EXEC and its commanding language, ESL, are currently

implemented using multi-threaded Common LISP. A new
version of EXEC is currently under development in C/C++.
The internal EXEC code is designed in a modular, layered
fashion so that individual modules can be designed and

tested independently. Individual generic device knowledge

for RAX is implemented based on EXEC's library of device

management routines, to support addition of new devices
and reuse of the software on future missions.

More details about EXEC can be found in [I 1, [21, [31 and

[81.
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Diagnosis and Repair-- We refer to the diagnosis and repair
engine of RA as MIR, fi,r Mode Identification and

Reconfiguration. MIR eavesdrops on commands that are

sent to the on-board hardware managers by EXEC. As each
command is executed, MIR receives observations from

spacecraft sensors, abstracted by monitors in lower-level

device managers for ACS, Bus Controller, and so on. MIR

uses an inference engine called Livingstone to combine
these commands and observations with declarative models

of the spacecraft's components to determine the current
state of the system (Mode Identification) and report it to

EXEC. EXEC may then request that Livingstone return a set
of commands that will recover from a failure or move the

system to a desired configuration (Mode Reconfiguration).

Figure 7 illustrates the data flow between a spacecraft,
EXEC and Livingstone.

MI is responsible for identifying the current operating or
failure mode of each component in the spacecraft, allowing

EXEC to reason about the state of the spacecraft in terms of
component modes, rather than in terms of low-level sensor
values. MR is responsible for suggesting reconfiguration

actions that move the spacecraft to a configuration that
achieves all current goals as required by PS and EXEC,

supporting the run-time generation of novel reconfiguration
actions. Though in RA Livingstone is only used to recover

following a component failure, its MR capability can be
used to derive simple actions to reconfigure the spacecraft at

any time. Thus Livingstone can be viewed as a discrete
model-based controller in which MI provides the sensing
component and MR provides the actuation component.

Livingstone uses a single set of models and core algorithms
to provide both the MI and MR functions.

Exec or
Human

State

_tone

oState _

Discretized =
Observations

Figure 7: Livingstone Processing Cycle

To use Livingstone, one specifies how the components of

interest are connected. For each type of component, one
then specifies a finite state machine that provides a
description of the component's nominal and failure

behavior. Figure 8 graphically depicts a Livingstone model
of the Cassini main engine subsystem. An important feature
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is that the behavior of each component state or mode is

captured using abstract, or qualitative, models [3, 41. These

models describe qualities of the spacecraft's structure or
behavior without the detail needed for precise numerical

prediction, making abstract models much easier to acquire

and verify than quantitative engineering models. Examples
of qualities captured are the power, data and hydraulic

connectivity of spacecraft components and the directions in

which each thruster provides torque. While such models
cannot quantify how the spacecraft would perform with a

failed thruster for example, they can be used to infer which
thrusters are failed given only the signs of the errors in

spacecraft orientation. Such inferences are robust since

small changes in the underlying parameters do not affect the
abstract behavior of the spacecraft.

f"-Valve Component Model

Open _):"_:i ......._..,_ Stuck
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closed

inflow = outflow = 0 j

Oxidizer

Fuel

Helium

Figure 8: Livingstone Model of the Cassini Main
Engine Subsystem

Livingstone's abstract view of the spacecraft is supported by
a set of fault protection monitors that classify spacecraft
sensor output into discrete ranges (e.g. high, low nominal)

or symptoms (e.g. positive X-axis attitude error). One
objective of the RA architecture was to make basic
monitoring capability inexpensive so that the scope of

monitoring could be driven from a system engineering
analysis instead of being constrained by software

development concerns. To achieve this, monitors are
specified as a dataflow schema of feature extraction and

symptom detection operators for reliably detecting and
discriminating between classes of sensor behavior. The
software architecture for sensor monitoring is described

using domain-specific software templates from which code

is generated. Finally, all symptom detection algorithms are
specified as restricted Harel state transition diagrams
reusable throughout the spacecraft. The goals of this
methodology are to reuse symptom classification



algorithms, reduce the occurrence of errors through

automation and streamline monitor design and test.

It is important to note that the Livingstone models are not

required to be explicit or complete with respect to the actual
physical components. Often models do not explicitly

represent the cause for a given behavior in terms of a

component's physical structure. For example, there are
numerous causes for a stuck switch: the driver has failed,
excessive current hats welded it shut, and so on. If the

observable behavior and recovery for all eauses of a stuck

switch are the same, Livingstone neecl not closely model the

physical strueture responsible for these fine distinctions.
Models are always incomplete in that they have an explicit
unknown failure mode. Any component behavior that is
inconsistent with all known nominal and failure modes is

consistent with the unknown failure mode. In this way,

Livingstone can infer that a component has failed, though
the failure was not foreseen or was simply left unmodeled

because no recovery is possible. By modeling only to the
level of detail required to make relevant distinctions in

diagnosis (distinctions that prescribe different recoveries or
different operation of the system), we can describe a system
with qualitative "common-sense" models that are compact

and quite easily written.

Conflict-directed
Best first search

4. Spacecraft State 5. Recovery Actions

e.g. Switch is slill on e.g. Retry switch command

tivedte.g. Current is non-zeroJ

rs

! t
1. Commands given to 2. Quantitative data from

spacecraft systems spacecraft sensors
e.g. Turn off switch e.g. Current = 0.3 amps

Figure 9: Schematic of Livingstone Processing.

Livingstone uses algorithms adapted from model-based

diagnosis (see [ 10]) to provide the above functions. The key
idea underlying model-based diagnosis is that a combination

of component modes is a possible description of the current
state of the spacecraft only if the set of models associated
with these modes is consistent with the observed sensor

values. Following de Kleer and Williams [9], MI uses a
conflict directed best-first search to find the most likely

combination of component modes consistent with the
observations. Analogously, MR uses the same search to
find the least-cost combination of commands that achieve

the desired goals in the next state. Furthermore, both MI

and MR use the same system model to perform their

function. The combination of a single search algorithm with

a single model, and the process of exercising these through

multiple uses, contributes significantly to the robustness of
the complete system. Note that this methodology is

independent of the actual set of available sensors and
commands. Furthermore, it does not require that all aspects

of the spacecraft state are directly observable, providing an

elegant solution to the problem of limited observability.

Figure 9 provides a schematic overview of Livingstone's

processing.

The use of model-based diagnosis algorithms immediately

provides Livingstone with a number of additional features.
First, the search algorithms are sound and complete,

providing a guarantee of coverage with respect to the
models used. Second, the model building methodology is

modular, which simplifies model construction and

maintenance, and supports reuse. Third, the algorithms

extend smoothly to handling multiple faults and recoveries
that involve multiple commands. Fourth, while the

algorithms do not require explicit fault models for each
component, they can easily exploit available fault models to
find likely failures and possible recoveries.

Since the flight experiment, Livingstone has been ported to
C++ and significantly improved in the areas of both MI and

MR. The improved Livingstone is scheduled to be test
flown on both the X-34 and X-37 experimental vehicles.

Additional technical details about Livingstone can be found

in [4] and at http://ace.arc.nasa.gov/postdoc/livingstone

Subsystem Interdependencies

The Remote Agent eXperiment Manager (RAXM) is the

flight software interface to the Remote Agent experiment
(RAX) and isolates the RA software from the rest of FSW
via a set of clean API's.

In addition, it provides a terminal in the point-to-point
message passing protocol used by the DSI flight software
(see Figure 1). RAXM in particular is tasked with handling
three messages throughout the mission: RAX-START,
RAX-STOP and RAX-ABORT; RA software is operational

only during the times between a RAX-START and either
RAX-STOP or RAX-ABORT. RAX-START is used by

RAXM to decompress the RAX Lisp image and initiate
RAX control. The RAX-STOP is implemented to cleanly

terminate RAX at the end of the experiment under nominal
circumstance while the RAX-ABORT is intended to kill the

RAX process in the event of an abnormality detected by
RAXM. At all other times, RAXM discards all incoming

messages allowing all FSW subsystems that interact with

RAX to be ignorant of the RAX state.

When RA runs. RAXM handles and dispatches all incoming

messages related to RA -- some of the messages are handled
by RAXM, others are passed through to RAX itself.

Similarly, outgoing messages from RAXM can be due
either to RAXM or to RAX itself.

12



Likethecodeforotherflightsoftwaresubsystems,RAXM
iswritteninthe'C"programminglanguageandispartofthe
launchload.Asaresult,theinterfacesforRAXneededto
bespecifiedearly.

Thecomputationalresources(CPUtraction,memoryspace,
telemetrybuffersanddownlink,etc)requiredbyRAXM
whenRAwasnotrunningwereinsignificant.Thiswasby
designasawaytomitigatetheimpactoftheRAtechnology
demonstrationonDSI.

Preparing Lisp for Flight

One important aspect of the RA preparation for flight was

the preparation of Lisp for flight. The RA software

development and runtime environment was based on
Common Lisp, in particular the Harlequin Lispworks

product. The use of Lisp was appropriate given the
background of the RA developers, the early inheritance of

code libraries, and the hardware independence of the high-
level software interfaces between RA and the rest of flight
software. However, with the choice of Lisp came some

unique challenges. These challenges fell into two rather
broad categories: resource constraints and flight software
interfaces.

To fit within the 32 MB memory allocation and the CPU
fraction constraints, the RA team thoroughly analyzed their

code for memory and performance inefficiencies and

employed a "tree-shaking/transduction" process to the Lisp
image. The analysis is, of course, common for any high
performance software. However, transduction is Lisp-

specific and arises from the tight coupling of the Lisp
runtime and development environments. Transduction

removes the unneeded parts of the development
environment, e.g., the compiler, debugger, windowing
system. The result is a significantly smaller image, both in
terms of file system and runtime memory. During RA

testing, peak memory usage was measured at about 29 MB,

Upon completion of the transduction process the RA Lisp
image was compressed by a factor of about 3 to 4.7-MB
and uplinked to the spacecraft. On-board decompression
was initiated at the start of each RA run, with the file being

inflated directly into the 32~MB RA memory space. Use of
this custom compression drastically reduced the file uplink

time and kept the RA file space usage within the agreed
upon limits.

Besides the resource constraints, we also dealt with a

complicated flight software interface. The flight software
was written in the 'C" programming language and ran on the

VxWorks operating system. Lisp and 'C' interacted through
Lisp's foreign function interface. This interface was the

source of many early problems, primarily caused by
discrepancies between data structure alignments assumed by
the Lisp and 'C' compilers. These problems were quickly

discovered and resolved with the help of an extensive test
suite that tested a large number of function parameter
variations.

Another problem arose in preparing the Lisp multi-threading

system for flight. Originally, the Lisp thread scheduler

relied on a high-frequency, external, periodic wakeup call
issued at interrupt level. However, this went against the

design principles of the DSI flight software. Hence, we had

to significantly change Lisp's approach to thread preemption
to use a lower frequency wakeup call implemented with

flight software timing services.

Most of the late integration problems with RA Lisp arose
because of the VxWorks port. As RA moved from testbed

to testbed, ever closer to the final spacecraft configuration,

low-level Lisp problems arose. The problems were
consistently of two types: a function assumed by Lisp to be

present was not present or a function was present but did not

perform as expected by Lisp. The first type of problem was
resolved by consistent application of a detailed RA and

FSW build process. The second type of problem was
addressed on a case-by-case basis. Solutions to these

problems were made difficult due to the reduced debugging

visibility as testbeds assumed the spacecraft configuration.
We benefited from the dedicated efforts of both Harlequin
and the DS I FSW team.

THE REMOTE AGENT EXPERIMENT

During the DSI mission the Remote Agent technology was

validated with an experiment, the Remote Agent

eXperiment (RAX). The flight experiment was conducted
between May 17th 1999 and May 21 _11999, and achieved all
of the technology validation objectives. However, the story

will only be partial without reporting the valuable data
gathered during development and testing on the ground. In
the case of RA, this is particularly important since the

technology is intended as a tool to support system
engineering and operations for a mission, rather than simply
provide the resulting autonomous capabilities. By

quantitatively analyzing the history of development of RAX
we can evaluate how well the current state of the technology

support its ultimate goals. This can also help identify weak
points that require further research and development.

In this section we describe RAX and we attempt to evaluate

the development and testing experience with respect to the
features of the technology. We first put RAX into the larger
perspective of the evolution of the RA technology. Then we

describe the subsystems and fault modes modeled, the
experiment scenarios, and the expected in-flight behavior.

We then discuss how RAX was developed and validated and
the details of the flight experiment. Successively, we

analyze effectiveness and cost of development and testing.
We support our analysis on the actual record of the problem

reports filed in the RAX problem tracking system during
development. Lessons learned conclude this section.
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H&torical Perspective

Development of the RA technology effectively started in

May 1995. At that time spacecraft engineers from JPL and
Artificial Intelligence (AI) technologists from Ames and

JPL started working together on the New Millennium

Autonomy Architecture rapid Prototype (NewMAAP), a 6
month eftbrt intended to assess the usability of AI

technologies for on-board flight operations of a spacecraft

[21]. NewMAAP yielded a proof of concept of an
autonomous agent that formed the fundamental blueprint for

Remote Agent. NewMAAP also helped build the team of

technologists that continued development of Remote Agent
on DS 1.

The successful demonstration of NewMAAP in November

1995 led to the selection of RA as one of the components of

the autonomy flight software for DSI. Between December
1995 and April 1997 the RA team was part of the DSI flight
software team. This led to the development of the three

engines of the RA component technologies and included a

substantial speed up of the MIR inference engine (see [4]),
the design and implementation of the ESL language used by
EXEC (see [11), and the design and implementation of the

heuristic search engine for PS together with the language to
formulate search heuristics. With regard to the overall

Remote Agent architecture, we designed and implemented

the fault protection protocols, both at the low-level,
involving EXEC and MIR and at the high-level, involving
EXEC and PS. During this period we acquired much of the

high-level system knowledge needed to model DSI cruise
operations (including image acquisitions of beacon asteroids
for AutoNAV, timed IPS thrusting and file uplink and

downlink) and other DSI capabilities required for asteroid
encounter activities.

In March 1997 the DSI autonomy flight software was

substantially overhauled and DSI adopted the Mars

Pathfinder (MPF) flight software as the basis for its flight
software, RA was re-directed to become an experiment

operating for at most six days during the mission on a cruise
scenario including AutoNAV orbit determination and IPS
timed thrusting. RAX re-used much of the software

developed during the previous autonomy flight software

phase of DS 1. RAX focused on the process of testing each
RA component, integrating and testing them into the
complete RA, and integrating and testing RA together with
the DSI flight software on the flight processor.

Shortcomings found during the development and testing

phases required several extensions and re-designs of domain
models and the reasoning engines.

Event Date

Start of RAX development April 1997

Delivery of RAX Manager to flight December 1997
software

RAX integrated on the flight April 1998

processor

Project Software Delivery Review September 1998

DSI launch October 1998

First run of RAX with FSW on November 1998

high-fidelity hardware simulation

Beginning of M5 DS I project phase February 1999

RAX experiment May 1999

Table 2: Significant events for the RAX project

In this document we focus solely on RAX and we will make
use of the detailed development and testing records

maintained during this phase. However, when we will

attempt to give our conclusion on technology readiness, we
will do so keeping in mind the entire history of development

of Remote Agent.

Table 2 shows the highlights of the RAX starting with the
RAX development effort after the redirection of the flight
software to MPF. Due to this change a requirement was

imposed on the RAX team to keep interactions with the
flight team to a minimum. From the beginning, RAXM was
identified as being the primary interface to RA and part of
the launch load of DS 1; delivery of RAXM was initiated by

December after negotiating all interfaces with FSW. This
was the only significant interaction we had with the DSI

flight team till February 1999 three months prior to
activation of RAX. Integration of RAX on the Radbed high

fidelity testbed was completed during April 1998, which
allowed us to understand the timing characteristics of RA in

flight. The RAX Software Delivery Review in September
allowed us for the first time to show the DS 1 project the

progress we were making and explain the expected behavior
of RAX during flight. November of the same year barely

five months before the experiment, was the first time RAX
software ran on a Papabed after interfacing with the actual
FSW. It took another month (and some more) to actually

produce a plan and execute it on this testbed. The RAX
delivery entered the final deliverable phase in February of
1999 with code development frozen and bug fixes under a

strict change control regime. RAX was finally initiated on
DSI on May 17 th 1999.

We now describe in detail the DSI subsystems modeled in
RAX and the scenarios on which RA was exercised during

RAX development and testing.
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Domain models

We only developed domain models fi)r the subsystems and

fault modes that were necessary for the experiment. Table 3
describes the timelines modeled by the planner. Tables 4

and 5 list the components and module models developed for
MIR while Table 6 shows the modeled EXEC timelines.

These models captured the following subsystems and
resources:

* Ion Propulsion System
Detect and command standby through thrusting states.

• Attitude Control Subsystem.

PS planned attitude changes requested by NAV (IPS

attitudes and beacon asteroids) or specified as goals in
the mission profile. These attitudes were restricted in
the model to slews that maintained the solar panels on-

sun. For the experiment, the NAV profiles and goals

were specified to further limit the attitudes to either
High Gain Antenna (HGA) at Earth (the default attitude
and the IPS thrust attitude), or MICAS bore-sight at a
beacon asteroid.

• MICAS

PS planned data takes and low-voltage power on/off
(switch status and commands were modeled, but the

switch commands are not actually issued. See the

scenario description for why this is so.)

• Power

PS tracked predicted peak-power usage for each

activity in the plan (e.g., IPS thrusting, MICAS on), and
ensured that the total would never exceed the available

power from the solar panels, as predicted by the
operations team and supplied in the mission profile

MIR modeled a portion of the power distribution

system and its relays in order to confirm operation of

the switches commanded by RAX and disambiguate

between failures in the power system and erroneous
sensor readings. MIR modeled switches not

commanded by RA so that it could request the

experiment be aborted if the power system was in a

state out of scope for the experiment.

• Reaction Control System

MIR modeled the thruster pallets, thrusters and valves
of the RCS system in order to determine the health of

the various components from errors in attitude and
recommend which control mode to utilize

• Data System
MIR modeled the 1553 bus and a subset of the remote

terminal devices on it in order to monitor for remote

terminal hangs and recommend resets. Resetting was
limited to the Power Actuation and Switching Module

(PASM) instrument. Other remote terminals were

modeled in order to allow MIR to request the

experiment be aborted if certain out of scope data
system problems occurred.

• Sensors

MIR modeled a subset of the switch position and

current sensors on-board DSI as fallible components in
order to allow sensor failure as an explanation for

unexpected observations

• Remote Agent
PS models aspects of the operation of RA itself. For

example, the Planner timeline allows PS to plan time
for its next planning activity. The Special Activities
timeline allows PS to schedule execution of scripts that

(unbeknownst to RA) will cause simulated failures on-
board the spacecraft.
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Subsystem .State oC_9__mpat- Comments
Variables ibilities

MICAS

Navigation

Propulsion
& Thrust

Attitude

Power

Manage-
ment

Executive

Planner

Mission

Value

Executable: 2 7 14

Health: 1

Goal: 1 5 6

Executable: I

Mcxtels the health, mcxle and activity of the MICAS imaging camera.

RAX demonstrates fault injection and recovery for this device as part

of the 6-day scenario.

To schedule Orbit determination (OD) based on picture taking

activity.

Internal: 1

Goal: 2

Executable: !

Internal: I

Executable: 1

Health: i

Goal: 1

Internal: I

9 12

4 4

2 1

Based on thrust schedule generated by the NAV module, the planner

generates plans to precisely activate IPS in specific intervals based on
constraints in the domain model and is the most complex set of

timelines and subsystem controlled by the planner

Enables the planner to schedule slews between constant pointing
attitudes when the spacecraft maintains its panels towards the sun.
The targets of the constant pointing attitudes are imaging targets,
Earth (for communication) and thrust direction (for IPS thrusting.)

Allows the planner to ensure that adequate power is available when
scheduling numerous activities simultaneously.

Goal: 1 2 7

Executable: 1

Executable: 1 2 2

Goal: ! 2 2

Allows modeling of low-level sequences bypassing planner models

giving Mission Ops the ability to run in sequencing mode with the
RA.

To schedule when EXEC requests the plan for the next horizon.

Allows MM and PS to coordinate activities based on a series of

scheduling horizons updatable by Mission Ops. for the entire mission

Table 3: Summary of Planner models for RAX

Component Class # in Model Modes

ton propulsion system

(IPS)

remote terminal

attitude control

Switch

switch sensor

current sensor

hruster valve

! Standby, Startup, Steady State Thrusting, Shutdown, Beam Out, Controller

Hung, Unknown

6 Nominal, Resettable Failure, Power-cyclable Failure, Unknown

1 TVC, X for Y, Z for Y, X for Y Degraded, Z for Y Degraded, X for Y Failed, Z

for Y Failed, TVC Failed, Unknown

12 On, Off, Popped On, Popped Off, Stuck On, Stuck Off, Unknown

12 Nominal, Stuck On, Stuck Off, Unknown

3 Nominal (reported value = real value), Unknown (values unconstrained)

8 Nominal, Stuck Closed, Unknown

Thruster 8 Nominal, Unknown

)ropellant tank 1 Non-empty, Unknown (thruster hydrazine out or otherwise unavailable)

bus controller 1 Nominal, Unknown

vehicle dynamics 1 Nominal (This is a qualitative description of force and torque.)
.............. o .............................

_ower bus 3 Nominal (Failure considered too fatal and remote to involve in diagnosis.)

Table 4: DSI hardware modeled as components in MIR
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Module

power relay

power distribution unit

generic RT subsystem

IPS system

thruster pallet

reaction control system

PASM subsystem

# in Model Subcomponents

12

I

3

1

4

I

I

I switch, 1 switch sensor

12 relays, 3 power buses, 3 current sensors, I remote terminal

I remote terminal (Models RT for devices MIR does not otherwise model)

1 IPS, 1 remote terminal

2 thrusters (X facing and Z facing)

4 thruster pallets

! remote terminal

Table 5: DSI hardware modeled as modules in MIR

MODULE TIMELINE TOKEN DESCRIPTION

ACS Spacecraft Attitude

RCS_Health

RCS_OK

MICAS MICAS_Actions

(Camera)

MICAS_Mode

Op-Nav

PASM

SEP

Planner

General

MICAS_Health

Obs_Window

Nav_Processing

PASM Available

SEP

SEP_Time Accum

SEP_Schedule

SEP_Thrust Timer

Planner_ Processing

EXEC Activity

EXEC_Eval

constant_pointing_on_sun

transitional_pointing__on_sun

poke_primary_inertial_vector

rcs_available

maintain_rcs

micas_take_op_nav_image

micas_off

micas_ready

micas_turning_on

micas_turning_off

micas_availability

obs_window_op_nav

nav_plan_prep

pasm_monitor

sep_standby

sep_starting_up

sep_thrusting

sep_shutting_down

accumulated_thrust_time

thrust_segment

max_thrust_time

thrust_timer_idle

planner_plan_next_horizon

script_next_horizon

exec_activity

exec_eval_watcher

Point vector at Target, Solar Panels at Sun

Turn vector to Target, Solar Panels at Sun.

Small attitude change.

Maintain information on thruster status.

Set and maintain desired RCS mode.

Take a set of navigation pictures.

Keep MICAS off.

Keep MICAS on.

Turn MICAS off.

Turn MICAS on.

Ensure MICAS is available for use.

Wait for a specified duration.

Send message to prepare navigation plan.

Monitor the PASM switch.

Achieve and maintain IPS standby state.

Achieve and maintain IPS start-up.

Maintain a thrust level.

Stop thrusting and go to standby state.

Monitor thrust time accumulated.

Specifies desired thrust level and vector.

Set a timer and stop thrusting if time reached.

Thrust timer is off.

Request and get next plan from planner.

Run the next scripted plan.

Execute a low-level sequence file passed as a

parameter.

Process a specified script.

Table 6: Timellnes and their respective tokens by module (EXEC's perspective)
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Experiment Scenarios

The RAX experiment proposal contained of a 12-hour

scenario and a 6-day scenario. The 12-hour scenario was
designed as a confidence builder for the DSI project. The 6-

day scenario was to be run following successful completion

of the 12-hour scenario. Together, the 12-hour and 6-day
scenarios demonstrate all RAX validation objectives and

they were used for all RAX integration and testing until the

beginning of March 1999. In March 1999 the DSI project
levied additional constraints on how the spacecraft could be

commanded and specified that RAX should produce 12
hours of thrust or less. We responded by developing a 2-

day scenario that met the additional commanding constraints
and provided 12 hours rather than 4 days of thrusting. Our

ability to quickly develop a new scenario in response to
these new constraints was viewed very favorably by the

DS 1 project. Each of these scenarios is described below.

Twelve-hour Scenario--- The twelve-hour scenario involves

neither on-board planning nor thrusting with IPS. Rather,
the plan is generated on the ground, uplinked to the

spacecraft, and executed by EXEC and MIR. The scenario

includes imaging asteroids with the MICAS camera to
support optical navigation, a simulated sensor failure
scenario, and demonstration of low-level commanding from

a script through RAX to flip a switch. The planning of
optical navigation imaging provides the planner the

opportunity to reject low-priority, unachievable goal_; since
the optical navigation windows had time only to image a
subset of the asteroid goals.

Six-day Scenario-- The 6-day scenario includes both
on-board planning and operating IPS, and is a full up test of
RA. The scenario is divided into 2 planning horizons. At the

start of the scenario, PS generates a plan for the first horizon
that included MICAS imaging for optical navigation and

IPS thrusting. Execution of the first plan also includes a
ground command to modify the goals for the second
horizon. At the end of the optical navigation window PS

plans to switch off the MICAS camera. However, a stuck on
failure injection in the camera switch prevents RA from
turning off the camera, leading to a plan failure. Repeated

attempts to recover the problem fail. This leads to a replan,
which produces a second plan with the camera being left on.

The second plan also includes an activity to produce a plan
for the second horizon (the third plan in the scenario), which
is executed back-to-back with the second plan. While the

second plan is being executed, the switch failure injection is
undone and ground informs MIR that the switch is now

fixed. The execution of the third plan includes IPS thrusting,
optical navigation imaging, and two simulated failures, a
communication failure on the 1553 bus, and a thruster valve
stuck closed failure.

The MICAS stuck-on failure demonstrates how MIR and

EXEC can make repeated attempts to recover a camera
switch until it is deemed permanently stuck. The 1553 bus
remote-terminal failure illustrates successful recovery of

communication with a device by resetting its remote
terminal (RT). In the ACS thruster stuck-closed failure
MIR infers from an attitude error and models of the

spacecraft dynamics that one of a particular pair of thruster
valves is stuck closed. MIR is then able to recommend that

no matter which one of the two valves is stuck, switching

ACS control modes will mitigate the problem.

Two-Day Scenario--In March 1999, the DSI project

analyzed the 6-day plan and decided that RA should not
switch the MICAS camera off after each use due to
concerns about thermal effects. In addition, RA would be

required to produce at most 12 hours of IPS thrusting to
ensure that DSI would be on track for its asteroid encounter

in July 1999.

The 2-day scenario was created that is similar to a

compressed 6-day scenario, except that the simulated
MICAS switch failure was active for the whole duration of

the scenario. This prevented RA from ever switching off the
camera. Furthermore, the mission profile was adjusted so
that PS would produce plans with only about 12 hours of

IPS thrusting. This scenario is similar to the standard DSI
cruise phase, which consists of IPS thrusting punctuated

with periodic optical navigation activities. This baseline
demonstrated RAX's basic commanding capabilities.

This scenario retains the simulated faults that exercise

RAX's robust fault response capabilities. Since we could

not depend on failures occurring during the experiment,
failures were simulated by injecting false monitor readings
consistent with the failures. While simulations are necessary

for demonstration, the RAX is fully responsible for
responding to real failures within its limited scope occurring

during the experiment. To avoid potential conflicts between
RAX and the flight software fault protection mechanism
(FP) the RAX response threshold is a little lower than that

FP to allow RAX to detect and respond to faults before FP
does. If RAX fails to resolve a fault quickly enough, the FP

response would be triggered (since the fault is still active).
The FP response is to terminate RAX and resolve the fault.

RAXdevelopment

RAX was developed on a number of platforms of decreasing
processor speed and increasing level of hardware and

software fidelity (see Table 7).

We adopted a continuous integration development process
with new software capabilities being first developed on the

UNIX platform. Before they could be incorporated in a
software build and be appropriately tagged, new features or

bug fixes had to run to completion a representative set of
scenarios. As time progressed, testbeds of higher and higher

fidelity became available. As this happened, the
requirements for acceptance of software modifications
became more and more demanding since the scenarios had

to run on all available platforms.

Besides the speed of the processors another factor affecting
productivity was the simulated clock speed. The UNIX,
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Babvbed and Radbed platfi_rm made use of a low fidelity
simulation developed by the RAX team, which essentially

only simulated the message traffic and the delays in
receiving responses from flight software. This meant that

the simulator was allowed to advance the clock at "warp"
speed, simulating in a second several minutes or hours of

actual elapsed time. Time warping allowed us to run to

completion the full 6-day scenario in less than an hour,

tremendously increasing the productivity during
development and testing on such lower fidelity testbeds.

Platform

DSI

Spacecraft

DSI

Testbed

Hotbench

Papabed

Radbed

Babybed

UNIX

Fidelity CPU/OS Hardware

Rad6000
Highest VxWorks Flight

Rad6000 Flight

High VxWorks spares +
DSI sims

Rad6000 Flight

High VxWorks spares +
DS I sims

Rad6000 DS 1 sims
Medium

VxWorks only
Rad6000 RAX

Low
VxWorks sims only/

Very PowerPC RAX

Low VxWorks sims only'
SPARC RAX

Lowest
UNIX

Table 7: Development

Availability

I for DS I

l for DS I

I for DS I

l for DS 1

I for RAX

2 for RAX

unlimited
sims only

testbeds for RAX

Speed

l:l

l:l

1:1

I:l

I:1

7:1

35:I

UNIX

Babybed
Radbed

August 1997

Februar,/" 1998

April 1998
Papabed November 1998
Hotbench March 1999

DSI testbed April 1999

DS I spacecraft
Table 8: Dates of RAX

May 1999
readiness on testbeds

Since the higher fidelity testbeds could not be warped in
time because of interfaces to the actual FSW code, it

induced us to devise reduced length scenarios that would
exercise in a few hours of actual clock time most or all of

the functionalities included in the full, multi-day flight
scenarios. These shorter scenarios led to exercising RAX

under stress conditions complementary to those addressed
by the formal test process. As a consequence continuous

integration over the course of testing and development led to
the discovery and correction of a large quantity of RAX
software problems. Table 8 shows the highlights of the

testing on the various testbeds.

Ground Tests

To qualify RAX to run on board the DSI spacecraft, RAX
underwent a rigorous program of formal tests. The tests
covered nominal and off-nominal situations, and exercised

each Remote Agent component individually, the integrated

RAX product, and RAX together with the flight software, at
all levels of fidelity available on the ground testbeds.
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Autonomous systems like RA pose testing challenges that

go beyond those usually faced by more traditional flight
software. In tact, the range of possible behaviors exhibited

by an autonomous system is usually very large. This is

consistent with the expectation that the system operate
robustly over a large range of possible values of system

parameters. An exhaustive verification of all situations,

however, would require an unmanageably large number of

test cases. To make matters worse, the tests should ideally
be run on high-fidelity testbeds, which are heavily

oversubscribed, difficult to configure correctly, and cannot
run faster than real time. For example, in RAX we could run

only 10 tests in four weeks on the DSI Hotbench. To cope

with these time and resource limitations, we employed a
"baseline testing" approach to reduce the number of tests.
Moreover, we exploited as much as possible the lower-

fidelity testbeds to validate system behaviors for which
there was high confidence that the test results would extend

to the higher fidelity situations. We used the high fidelity
testbeds mostly in nominal situations and under stress

conditions that required RAX to guarantee spacecraft safety.

The baseline scenario was the scenario we expected to

execute in flight, initially the 6-day and 12-hour scenarios
and subsequently the 2-day scenario. We tested a number of
nominal and off-nominal variations around these scenarios.

These covered variations in spacecraft behavior that we
might see during execution and changes to the scenario that

might be made prior to execution. Changes included
variations to the goals in the mission profile, variations in
when faults might occur, and variations in the FSW

responses.

The architecture of RA allowed us to run certain tests on

lower-fidelity testbeds and be confident that their results

would hold on higher-fidelity testbeds. Specifically, RA

commands and monitors the spacecraft through well-defined
interfaces with FSW. Those interfaces were the same on all

platforms, as were the range of possible responses. Only the

fidelity of the responses improved with platform fidelity.
This allowed us to exercise a wide range of nominal and off-
nominal behaviors on the Babybeds and the Radbed, test the
most likely off-nominal scenarios on the Papabed, and test

only the nominal scenarios and certain performance and
timing related tests on the Hotbench and on the DS1

Testbed. A special case was testing of the PS component of
RA that made extensive use of the UNIX testbeds for its

functional testing.

The remainder of this section describes the tests on each of

the testbeds.

UNIX The PS team made extensive use of the UNIX

testbed for PS unit testing throughout the formal testing
process. Use of the UNIX testbed was critical since PS is a

computationally intensive task and could not take advantage

of time .warping. Both in nominal and fault response
situations, PS essentially operated as a batch process with

practically no reliance on the underlying real-time system
(e.g., timing services). This allowed us to repeatedly run a



batchof 269testswithseveralvariationsof initial states,

goals of the planner and model parameters (e.g., possible
turn durations). The tests were repeated for each release of

the RA software, providing a certain measure of regression

testing for the PS software.

against improper commands by having subsystem engineers
review the execution traces of the nominal scenarios, and

doing automated flight rule checking. The nominal
scenarios were run in conditions that were as close to flight-

like as possible.

Babvbed and Radbed testing--Each of the RA modules
devised a test suite of nominal and off-nominal scenarios

that isolated and exercised key behaviors in each module.
For PS this involved a batch of 54 tests comprising some of

the tests in the UNIX batch plus tests devised to test system

level responses of PS (e.g., response to invalid initial states
or to an asynchronous kill message sent by EXEC). The

repetition of the tests from UNIX both validated the

complete functional equivalence of PS between UNIX and
PPC and verified the acceptability of PS performance on the
real-time architecture. MIR was exercised on a batch of 110

tests covering the likeliest failure contexts. The PS and
MIR tests were used for testing EXEC, and a suite of twenty

additional scenarios exercised the system-level interaction
of all modules. These tests were run rapidly on the

Babybeds and Radbed with time warping. Running a
scenario was a time-consuming and error-prone process. To

alleviate this, we designed an automated testing tool that

accepted an encoded scenario description as input,
controlled the simulator and ground tools to execute the
scenario, stopped the test when appropriate by monitoring

the telemetry stream, and stored all logs and downlinked
files for later examination. This rapid data collection led to

a total running time of about one week for all tests, since
tests could be scheduled overnight and required no

monitoring. Analyzing the results of the tests, however, was
still a time consuming process. These tests were run after

each major RAX software release.

Papabed testing--Papabed was extensively used during
development in order to integrate RAX with the DS1 flight
software. In the context of the formal testing process,

Papabed was used only to run six off-nominal system test
scenarios on the "frozen" version of the RAX delivered to

flight software for the flight experiment. These off nominal
scenarios corresponded to the situations that were most

likely or had the potential for highest impact on the outcome
of the experiment. No bugs were detected in these scenarios,

probably because RA responses to off-nominal situations
were well tested on the Babybed.

Hotbench and DSI Testbed testing--The Hotbench and DSI
Testbed were reserved for testing the nominal scenarios, and

for testing a handful of requirements for spacecraft health

and safety. RAX was designed with a "safety net" that
allowed it to be completely disabled with a single command
sent either by the ground or by on-board FSW fault

protection. Hence, the only ways in which RAX could
affect spacecraft health and safety was by consuming

excessive resources (memory, downlink bandwidth, and

CPU) or by issuing improper commands. We tested the
resource consumption cases by causing RAX to execute a

Lisp script that consumed those resources. We guarded

Software change control-As the date of the flight

experiment drew closer, our perspective on testing changed.
Throughout 1998 the main goal of testing was to discover

bugs in order to fix them in the code. Starting in January
1999 the discovery of a bug did not automatically imply a

code change to fix it. Instead, every new problem was

reported to a Change Control Board (CCB) composed by
senior RAX project members. Every bug and proposed fix

was presented in detail, including the specific lines of code
that needed to change. After carefully weighing the pros
and cons of making the change, the board voted on whether

or not to allow the fix. Closer to flight, DSI instituted its

own CCB to review RAX changes.

As time progressed, the CCB became increasingly
conservative and the bias against code modifications

significantly increased. This is demonstrated by the
following figures. In total, 66 change requests were
submitted to the RAX CCB. Of. these, 18 were rejected

amounting to a 27% rejection rate. The rejection rate

steadily increased as time passed: 8 of the last 20 and 6 of
the last 10 submitted changes were rejected.

The reason for this increase in conservatism is easily

explained. Every bug fix modifies a system that has already

gone through several rounds of testing. To ensure that the
bug fix has no unexpected repercussions, the modified

system would need to undergo thorough testing. This is
time consuming, especially on the higher fidelity testbeds,
so that full revalidation became increasingly infeasible as

we approached flight. Therefore, the CCB faced a clear
choice between flying a modified RAX with little empirical
evidence of its overall soundness, or flying the unmodified

code and trying to prevent the bug from being exercised in

flight by appropriately restricting the scenario and other
input parameters. Often, the answer was to forego the

change.

Summary of testing resources--We conducted about 269
functional tests for PS on UNIX (repeated for 6 software

releases), more than 300 Babybed tests (repeated for 6
software releases), 10 Papabed tests (run once), 10

Hotbench tests (repeated for two releases), and 2 DSI
Testbed tests (on the final release) over a period of 6 months

with four half-time engineers. This figure includes design,
execution, and analysis of the test cases, and development of

testing tools.
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Ground Tools

To provide adequate coverage and visibility into the

workings of RA onboard, we designed a suite of ground
tools interfaced with the real-time telemetry generated by
RA.

The two major goals of the RA ground tools were:

I. To present a summary of the spacecraft status

understood easily by the mission operations team.

2. To present enough information about the inner
workings of the RA software for the experiment
team to quickly recognize and debug problems.

To support these goals, telemetry specific to Remote Agent
was downlinked during the test. The RA-specific telemetry
included contained:

• Planning events (e.g., planning started, finished, and

progress messages)

• Sequence execution events (e.g., plan p is starting
execution, or plan step x started executing at time tl)

• Mode interpretation events (e.g., valve v changed state
from nominal to possibly-stuck-closed)

• Messages between RA components and between RA
and other DS 1 flight software.

This telemetry was event oriented and largely incremental,
i.e., interpretation of one message depended upon receipt of

earlier messages. This design created some problems as we
will detail later. In addition, there were heartbeat ('Tm still

alive") messages from RA components visible in the normal

DSI telemetry. The next sections describe specific ground
tools constructed to examine this telemetry.

Packet View--Remote Agent telemetry is event-based. 5

PacketView displays these events in a simple one line per
message format that is easily understandable to all members
of the team. As such, PacketView was the most

fundamental of the RA ground tools. The PacketView

interface (see Figure 10) displayed four types of telemetry

packet for each of the three RA modules and IPCO_RAXO
on-board messages sent between the three RA components.
These were displayed as color-coded scrolling lines of text.

Missing packets, detected by gaps in the sequential packet
numbering, were displayed as a single line in a unique color.

Search capabilities were available based on message type
and content.

User selectable dialogs presented "pretty-printed" versions

of the single-line packet entries. The "time bar" displayed
the most recent "spacecraft sent" Greenwich Mean Time

(GMT), the most recent "ground received" GMT time, and a

running time since last packet was received.

ExecView-- ExecView visualized the execution status of

plans onboard the spacecraft (see Figure 1 !). Different
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kinds of activity ass_>ciated with different paris of the

spacecrafl appeared on separate timelines. For each kind of
activity, specific planned events were represented as tokens

appearing along the timeline. Tokens were color-coded to

represent their executi_n status, i.e., in-lhc-future, currently-
executing, c_mplcted and completion-overdue.

As the plan was being executed by EXEC onboard the

spacecraft, the start and finish times of the activities would
be expected to change. Through the constraints, these
changes would impact later activities. ExecView would

propagate these changes downstream in the schedule, using
the same propagation techniques used by the Planner.

Figure I h ExecView (plan execution status)

ExecView was designed initially as a debugging tool for

validating EXEC development. As a result it did not have
support for handling missing telemetry packets during

flight. As a result, it produced some erroneous conclusions
during RAX concerning the state of plan execution. To
make ExecView more useful, it will have to handle such

missing data.



The Ground Planner--Of the three technology modules

flown as part of RA, the spacecraft team was least
comfi_rtable with PS. To allow the DSI team to gain

confidence in the onboard planner, the RAX team used a

ground twin of the planner. The ground planner was
identical to the one onboard and was able to duplicate the

onboard twin by tapping into the real time telemetry

available. It had access to other flight software resources via

connection to the Papabed. This testbed accurately
replicated the software onboard DSI although it did not

replicate the hardware. Of particular importance to the

planner were navigation module and beacon asteroid file
describing targets for optical navigation and the portion of

ACS that predicted the time required to change spacecraft
orientation.

The ground planner was a useful tool in predicting the

performance of the planner onboard and was especially
useful as a confidence builder for mission staff unfamiliar

with the working of an autonomous planning agent.

PS Graph

PS Graph (see Figure 12) displayed the problem-solving
trajectory taken by PS for each of the plans generated by the
on-board Planner. This took the form of an x-y graph

representing the search depth vs. number of search nodes
visited for each successive step of the planner's search.

The purpose of these plots was to provide a quick summary
of how PS problem solving process. For example, a

trajectory that visits the same depth level several times
while the search node number increases indicates that the

planner is backtracking. The persistence of this situation for
a large number of steps is an indication that PS may be
thrashing and that it will be unlikely to return a solution
within the allotted amount of time. Another useful use of the

PS Graph plots is the comparison of telemetry data

trajectories generated during simulation runs of the ground

planner twin.

Although very simple, we were surprised by the power of
summarization of this tool and the level of insight that it

could provide b_th during development of RA and during

operations in a situation of stress. As we will discuss in the
flight experiment section, PS Graph allowed us to monitor

an unexpected situation with PS and to quickly identify the

likely cause of the problem. In the future, it will be
advisable to design several simple visualizations like PS

Graph fi_r the reduced ground team supporting an autonomy
mission.

Stanley and MIR

A version of MIR was also run on the ground. The purpose
of this was to inter MIR's full internal representation of the

spacecraft state from the telemetry that contained a much
smaller subset. Specifically, it contained the set of

independent variables in MIR's spacecraft model. The
Stanley ground tool displayed a hierarchical schematic of

the spacecraft's on-board components whose status was

driven by the ground MIR (see Figure 13).

Components could be opened to show more detail or closed.
The states displayed were blue (ok - powered off), green (ok

powered on), yellow (recoverable failure), purple

(degraded failure), and red (permanent failure). Since
Stanley assigned colors to all states, nominal as well as off
nominal, it allowed the user to tell at a glance the conditions

of the devices. Stanley did not address the issue of

displaying continuous values, such as a battery state of

change.

Figure 12: PS Graph (planner progress) display

Figure 13: Stanley (hardware status) display

In addition to the color changes, detected component faults

were reported by popping up an alert box. The alert box
allowed the user to click on an entry, resulting in the

schematic being opened down to the appropriate
hierarchical level to show the local context of the fault.

Histories of all state changes, important or not, were

available at any time by clicking on components.

Predicted EventsiIn flying an autonomous agent, like RA,

ground operators observing the spacecraft state via its
telemetry, may not be in a position to know when certain
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eventsare to takeplaceprecisely.It wasnevertheless
importanttohaveapredictionof whenRAplannedtotake
variousactions,sothattheappropriatesubsystemstationsat
the missionoperationscenter could be staffedfor
observability."Wetherefore,generateda PredictedEvents
File (PEF) file, which reportedboth the h)w-level
commandsRA wouldissuetogetherwiththehigh-level
actionsRAwasaskedtotake.

Public Outreach via the Web---Emailed summaries of

events onboard presented in simple English and a Java

applet timeline display on the web, patterned after
ExecView, were two additional tools to present RA's

progress to the public. These tools are interesting because
they required an even higher target for simplicity and

understandability than did the flight controllers' tools.

Several recent missions have used pagers and email to

deliver notifications to the mission operations team. The
DSI ground system, for instance, alerted operators by pager

when a given measurement strayed outside a preset range or
when fault protection telemetry went into an unusual state.

We took this a step further in RAX by producing
descriptions of important events in common English. The

summarized descriptions were automatically posted to the
RAX web site (http://rax.arc.nasa.gov) and emailed in

batches to a public mailing list. 2000 subscribers received
this email during RAX. Terse descriptions were also sent to
team members' alphanumeric pagers via email.

We also provided an alternative description of Remote
Agent activity (Figure 14) using horizontal timelines
patterned after ExecView. This was implemented as a java

applet. The timelines in the top window represented major
kinds of activity (e.g., attitude or camera-related activity).

Along the timelines were tokens indicating particular
activities (e.g., a turn) in effect reproducing the plans

generated onboard on a user's web browser. Also included
were controls to step through the timelines and an event-
based summary similar to that provided in email. The most

interesting feature of this applet was its ability to show what
RA planned to do at any point in the experiment by
selecting the event that occurred at that time. This is
interesting because the plan changed several times due to

simulated faults. Thus it provided an historical overview of

RA's re-planning activity and recreated for the general
public conditions onboard the spacecraft.

Due to time pressure, the outreach tools were designed to

handle the nominal scenario only (including the simulated
faults). They did not accurately reflect the RAX software

problems that occurred. They did, however, summarize
activity during the new scenario without modification.
These summaries are still available at the RAX web site at

http://rax.arc.nasa.gov.

Figure 14: Timeline applet

Additional details on the RAX Ground Tools can be found

in [14].

Flight Test

RAX was scheduled to be performed on DS 1 during a three-

week period starting May 10, 1999. This period included
time to retry the experiment in case of unexpected

contingencies. On May 6, 1999, DSI encountered an
anomaly that led to spacecraft sating. Complete recovery
from this anomaly took about a week of work by the DS!
team, both delaying the start of RAX as well as taking time

away from their preparation for the asteroid encounter in

July 1999. In order not to jeopardize the encounter, the DSI
project also decided to reclaim the third RAX week for

encounter preparation, leaving only the week of May 17th,
1999, for RAX. However, to maximize the time to try the

more important 2-day experiment, they agreed to go ahead

with the 2-day experiment without first doing the
confidence building 12-hour experiment. This decision was
strong evidence that the DS 1 project had already developed

significant confidence in RAX during pre-flight testing.

Flight Test Part 1-- The flight experiment started on
Monday, May 17th, 1999. At 11:04 am PDT, we received a

telemetry packet that confirmed that the 2-day scenario had
started on DS 1. Shortly thereafter, PS started generating the

first plan. The first plan was generated correctly, but not
before an unexpected circumstance created some
apprehension in us.

Figure 12 graphically describes the situation with the output
of our PSgraph ground tool. The blue trajectory relates to a
Papabed test that we ran on May 16 t", 1999 under identical

condition to those of the flight test. The green trajectory
describes what happened during flight. The deviation in the

green trajectory from the 45 degrees, diagonal trajectory
means that PS in flight backtracked significantly more than

on Papabed. Since the conditions on the spacecraft were
believed to be practically identical to those on the ground

testbeds, there was no apparent reason for this discrepancy.
Subsequently, the cause of this discrepancy was traced back
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to the spacecraft and Papabed differing on the contents of

the AutoNAV file containing asteroid goals. Therefore, in

flight PS was actually solving a slightly different problem
than it had solved on the ground! Thus, this unexpected

circumstance allowed us to demonstrate that PS problem

solving was robust to last minute changes in the planning

goals, increasing the credibility of the autonomy
demonstration.

The 2-day scenario continued smoothly and uneventfully
with the simulated MICAS switch failure, the resulting

replan, long turns to point the camera at target asteroids,
optical navigation imaging during which no communication

with DS I was possible, and the start of IPS thrusting.

However, around 7:00 am on Tuesday, May 18, 1999, it

became apparent that RAX had not commanded termination
of IPS thrusting as expected. Although plan execution

appeared to be blocked, telemetry indicated that RAX was
otherwise healthy. The spacecraft too was healthy and in no

apparent danger. The decision was made to use EXEC's
ability to handle low-level commands to obtain more

information regarding the problem. Once enough
information had been gathered, the decision was made to

stop the experiment. By this time an estimated 70% of the
RAX validation objectives had already been achieved.

acceptance of the new RAX scenario. This is yet more
evidence that the DSI project had developed a high level of
confidence in RA and its ability to run new mission

scenarios in response to changed circumstances. Hence,
although caused by an unfortunate circumstance, this rapid

mission redesign provided unexpected validation for RA.

RAX Flight Part 2--The 6-hour scenario was activated

Friday morning. The scenario ran well until it was time to
start up IPS. Unfortunately, an unexpected problem

occurring somewhere between FSW and RAXM caused a
critical monitor value to be lost before it reached RA. The

cause of this message loss has not been determined. The

problem of lost monitor values could have been avoided
with periodic refreshes of the monitor values. This was

deemed out of scope for the purposes of the experiment, and
RA was known to be vulnerable to message loss. This

vulnerability led RA's estimation of the IPS state to diverge
from the true state. Fortunately, the discrepancy proved to

be benign. Hence, RA was able to continue executing the
rest of the scenario to achieve the rest of its validation

objectives.

By executing the two flight scenarios, RAX achieved 100%
of its validation objectives.

Troubleshooting and Recovery--By late Tuesday afternoon
the cause of the problem was identified as a missing critical

section in the plan execution code. This created a race
condition between two EXEC threads. If the wrong thread
won this race, a deadlock condition would occur in which

each thread was waiting for an event from the other. This is
exactly what happened in flight, though it had not occurred
even once in thousands of previous races on the various

ground platforms. The occurrence of this problem at the
worst possible time provides strong impetus for research on

formal verification of flight critical systems. Once the

problem was identified, a patch was quickly generated for
possible uplink.

Following the discovery of the problem, we generated a 6-
hour RAX scenario to demonstrate the remaining 30% of

the RAX validation objectives. This scenario included IPS

thrusting, three failure scenarios, and back-to-back planning.
This new scenario was designed, implemented, and tested,

together with the patch, on Papabed overnight within about
10 hours. This rapid turn around allowed us to propose a

new experiment at the DSI project meeting on Wednesday.
The DS I project decided to proceed with the new scenario.
However, they decided not to uplink the patch, citing

insufficient testing to build adequate confidence. In
addition, based on the experience on various ground

testbeds, the likelihood of the problem recurring during the
6-hour test was deemed to be very low. Nonetheless, we

developed and tested a contingency procedure that would
enable us to achieve most of our validation objectives even

if the problem were to recur.

The DSI project's decision not to uplink the patch is not

surprising. What was remarkable was their ready

Effectiveness of the development and test process

Progress in development and testing during the RAX project
can be analyzed through the Problem Reports (PRs) filed

between April 1997 and April 1999 (see Table 10).

Subsystem Number of PRs

Planner/Scheduler 233

Executive i 00

MIR 85

RAX Manager 22

System 77

Communication 22

Simulator 30

Others I l

Total 580

Table 10: Number of PRs by subsystem

A developer or a tester could file a PR, usually reporting a

bug, or requesting a change in the software behavior. A few
PRs were reminders of activities or checks to be performed.

PRs remained open until the developers addressed them.

When a resolution to the report was filed (e.g., a bug fix was

provided), the originator of the report would check the
validity of the resolution. If accepted the resolution was
included in a formal release. A few PRs were suspended.
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Thismeantthattheriskof theproblemwasassessedand
consideredacceptablewithinthelimitsofRAX.

Figure15givesanideaof thetemporaldistributionof new
PRsfiledoverthedurationof theproject.Thelastfour
columns(from January1999to April 1999)relateto
problemsthatweresubmittedto theCCBprocess.Notice
thatduringthenumberof PRsin thisperiodis stillquite
high(91).This depended in part on the fact that integration
with flight software started in earnest in December 1999,

with RAX running on Papabed, and that until then RA had
only been operating interacting with low fidelity simulators.
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Figure 15: Temporal distribution of Problem Repprts

PRs can be divided in three categories.

• Modeling PRs required by changes in the domain

specific knowledge relative to the DSI spacecraft
subsystems;

• Engine PRs affecting the core reasoning engines of
RA

• Other PRs related to other mechanisms such as the

format of data file exchanged between RA
components. This category also includes reminders

and requests of change that were outside the scope
of RAX

Figures 16, 17 and 18 describe the distribution of problems
by category for each individual engine. The most stable RA
subsystem was MIR. This stability manifested itself both in
terms of the total number of Engine and Model PRs filed

and in terms of the very few PRs of these categories filed in
the last 4 months of the project. This was due both to the

maturity of the MIR technology and to the fact that the
problem addressed by MIR changed very little during the

duration of the project.
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Figure 16: Planner PRs by category
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Figure 17: Executive PRs by category

The command language used by EXEC, ESL, was

developed prior to the RAX project and caused a negligible
number of PRs. The majority of the EXEC PRs fell into the

Other category and were related to integrating the PS and
MIR modules. The next largest category of PRs was model
related. These tended to manifest themselves each time RA

was integrated on a higher fidelity testbed. Models for
EXEC were undergoing modifications quite late (February

to April 1999). This was primarily due to the fact that these
months covered a period of intense activity on Papabed
with the interfaces with the details of how flight software

operated being finally communicated to the RAX team. This
resulted in some localized changes in interface functions
and in task decomposition procedures. The effects of these

changes were typically localized at the EXEC level and did
not propagate up to PS models. This confirms the possibility

of developing RA even on the basis of an accurate but
abstract characterization of the modeled system, with much

of the high-level behaviors remaining stable when further
details on the behavior of the system are known
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Figure 18: MIR PRs by category

Both in the case of MIR and EXEC, testing was very
effective at validating models. EXEC and MIR models have

many non-interacting or loosely interacting components that
can be tested independently. This reduces the number of test

cases that are needed. Testing small components of the

model independently like we did in RAX should scale-up to
larger models for future science missions.

In the case of PS, a larger overall percentage of PRs (about

45%) were model related. More importantly, a large
number of new problems were discovered during the last

/'our months of the project, after the formal testing process
had ended. The vast majority of these problems consisted of

PS operating correctly but being unable to find a plan within
the allocated time limit since its search was "thrashing".
These problems were particularly serious since they could

easily arise in off-nominal situations during flight.

There were several reasons for this situation:

1. The ranges of some parameters turned out to be

different than those assumed by PS testing, e.g., PS
testing assumed turn durations were at most 20 minutes,
while actual turns could take over an hour. This created

stress situations not considered by formal PS testing.

2. Planning problems became more challenging when we

transitioned from the 6-day scenario to the 2-day
scenario. The temporal compression led to the
disappearance of slack time between activities. In the

6-day scenario, PS could exploit this slack to achieve
subgoals without backtracking. In the 2-day scenario

backtracking became necessary, revealing additional
brittleness in the PS chronological backtracking search.

A more fundamental issue was the independence
between the PS test generator and the structural
characteristics of the domain model. This led to the test

generator missing a number of stress cases. For

example, one problem depended upon the specific
values of three continuous parameters: the time to start
up the IPS engine, the time to the next optical
navigation window, and the duration of the turn from

the IPS attitude to the first asteroid. An equation

.

relating these parameters can crisply characterize the

stress situations. Unfortunately, the automatically
generated test cases used for PS validation only overed

pair-wise interactions. Therefore, they could reliably

detect such problems.

Given the late date at which these new problems were

discovered, it was not feasible to modify the test suite to test
extended variations around the new baseline. Instead, we

focused on just the most crucial variation: the time at which

replans might occur. The objective was to ensure that the
planner was robust to any re-planning contingency. Two

steps were needed to accomplish this. First, the new 2-day
scenario was designed to guarantee that the harmful
constraint interactions of the PS domain model would be

avoided under any hypothetical replanning contingency.

The idea was to ensure that PS could always return a plan

within the given time limit. Second, a new PS test suite was
carefully designed and run to ensure that this was indeed the
case.

The design methodology for this new PS test suite is

instructive. Exhaustive generation of all possible plans was
clearly impossible. Instead, using our knowledge of the PS
model, we manually identified boundary times at which the

topology of the plans would change. We identified 25 such
boundary times and generated a total of 88 test cases

corresponding to plans starting at, near, or between
boundary times. This led to the discovery of two new bugs.
This number of test is more than four orders of magnitude

smaller than the total of 172,800 possible replan times.
Furthermore, analysis of the test results showed that PS

would fail to find a plan at only about 0.5% of all possible
start times. Although the probability of this failure was

extremely low, contingency procedures were developed to
ensure that the experiment could be successfully continued
even if this PS failure actually occurred.

We used the above test suite design methodology only
toward the end of RAX, after the PS model and code had

been frozen. However, we believe that this (currently
manual) analysis method can be generalized and extended to
provide an automatic PS testing procedure throughout the

development process for new application domains.

Note that the number of PRs regarding the reasoning
engines of PS, EXEC and MIR was relatively small. For

example, less than 10% of PS's PRs were Engine related
and the last was filed in September 1998. However, the bug

in EXEC encountered during RAX shows that our engine
validation methodology could have improved. In fact, our

testing was primarily focused on validating the knowledge
in the domain models. Tests were selected to exercise the

domain models. By exercising RA on these test scenarios,
we effectively tested the domain models and engines as a

unit. However, especially for concurrent systems such as
EXEC, a much better approach is to thoroughly formally
validate the logic of the engines through the use of formal

methods [201. Although expensive, this form of testing can
give high level of quality assurance on the core of the RA
technology. Moreover, since the engines remain unchanged
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overa largenumberofapplications,thecostof this testing
can be amortized across several missions.

Costing

Figure 19 gives an overall view of the costing of RAX

starting from October 1997 when tracking information was
available. The figure describes costs based on development,

testing, integration and technical management activities.
And on the Y-axis we show the Full Time Equivalence

(FTE') exerted. Costing by FTE's is more appropriate in this
case because of the differing accounting standards used at
NASA ARC and JPL.

The chart clearly shows the distinct development and testing
and integration efforts being partitioned in time;

development efforts were clearly focused before the move
to the high-fidelity testbeds. And while testing and

integrations efforts were ongoing activities, the came to
dominate the latter part of the move to the testbeds. While
the overall trend is a curve with diminishing figures, there

are some features that need some explanation.

0 _nt

0 RA Integroti<_

• RA Testing

• _A De_,,_lopmenl

Figure 19: RAX costing

The first peak in the Oct-Dec 97 timeframe corresponds to
the time when formal test plans were put together and UNIX
testing began. In addition, RAXM was also delivered to the

flight team at this time. The peak therefore, is categorized
by these efforts and the resulting testing and bug fixing that

took place.

The second peak in the Aug-Oct 98 timeframe corresponds

to a number of events. Primarily this was dealing with new
code deliveries to the planner engine to allow EXEC to deal
more robustly with additional information in the plans. This

increased effort highlights the extra individuals from outside
the RA team who made these efforts possible. In addition all

team members were gearing up towards testing on the

Papabed, the highest fidelity testbed available at that time.
Subsequent to that event, the curves show a deep decline, as

expected, in the development efforts when the team focused
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more on integration and testing on the various testbeds
available. Efforts dealing with integration therefore show a

perceptible increase.

Lastly, the gap between the testing and integration efforts

appears to be inverted in the December 98 and May 99
timeframe. The primary reason for this was our late arrival

on the high-fidelity testbeds. This resulted in our efforts to
be redoubled with integrating on these testbeds. It was also

the case that working on these testbeds took time and effort

beyond what was necessary on the lower fidelity testbeds
(Unix and Babybeds) that were available early on. Training

and detecting problems with the configuration also took up a

substantial portion of our time and effort resulting in a
larger manpower effort for integration as shown.

The actual costs of the entire RA development effort was
$500K for the NewMAAP demonstration (May to Nov

1995), $4.5 million during the DSI autonomy FSW phase

(Dec 1995 to March 1997) and $3 million for RAX (April
1997 to June 1999) for a total cost of $8 million.

Lessons Learned

The RA team learned valuable lessons in a number of areas

including RA technology and processes, tools, and even
autonomy benefits to missions.

Robustness of the Basic System--Model validation alone
does not suffice; the rest of the system, including the
underlying inference engines, the interfaces between the

engines, and the ground tools, must all be robust. Given our
resource constraints, we made the decision to focus our

formal testing on model validation, with engine and

interface testing happening as a side effect. This was a
reasonable strategy: code that has been unchanged for years

is likely to be very robust if it has been used with a variety
of different models and scenarios. However, newer code

does not come with the same quality assurance.

Furthermore, as the deadlock bug in flight showed, subtle
timing bugs can lay hidden for years before manifesting
themselves.

Conclusion: The primary lesson is that the basic system
must be thoroughly validated with a comprehensive test

plan as well as formal methods, where appropriate, prior to
model development and flight insertion. Interfaces between

systems must be clean and well specified, with automatic
code generation being used to generate actual interface
code, telemetry, model interfaces, and test cases; code

generation proved to be enormously helpful in those cases
where we did use it.

Robustness of Model Based Design--As mission

development times becomes shorter and mission objectives

become more ambitious, it is less and less likely that an

accurate model of each spacecraft component will be

available early in the flight and ground software

development cycle. Dealing with this uncertainty is a major



problem lacing future missions. By emphasizing qualitative

and high-level models of behavior RA can help solve this

dilemma. Qualitative, high-level models can be captured

early in the mission lifetime and should need only minor

adjustments when the hardware is better understo_xt. Our

experience on RAX essentially confirms this hypothesis.

Initial spacecraft models used by PS. EXEC and MIR were

built early in the DSI mission, before April 1997. During

the following year and a half, EXEC and MIR models did

not change and the PS model was only changed in order to

support more efficient problem solving by the search

engine, not in order to reflect new knowledge of the

spacecraft behavior. [n the last phase of the experiment

preparation, when communications between the RAX team
and the DS! team resumed, adjustments were needed to
finalize the interface between the low-level EXEC

primitives and flight software.

Conclusion: Contrary to much concern, the type of

qualitative, high-level models used by RA requires little

tuning throughout the project. The usefulness of the models
for software development has been validated.

Model Design, Development and Test--One of the biggest
challenges we faced was model validation. This was

particularly true during validation testing, when even small
changes in the models had to be carefully and laboriously

analyzed and tested to ensure that there were no unexpected
problems. In fact, in some cases we chose to forgo a model

change, and instead decided to institute flight rules that
would preclude the situation that required the model change
from arising. A related issue was that methods do not yet
exist to characterize RA's expected behavior in novel

situations. This made it difficult to precisely specify the
boundaries within which RAX was guaranteed to act

correctly. While the declarative nature of RA models was

certainly very helpful in ensuring the correctness of models
and model changes, the difficulty stemmed from unexpected
interactions between different parts of the model, e.g.,

different parts of the model may have been built under
different, implicit, conflicting assumptions.

Conclusion: The central lesson we learned here was the

need for better model validation tools. For example, the

automated test running capability we developed proved to
be enormously helpful, as it allowed us to quickly evaluate a

large number of off-nominal scenarios. However, scenario

generation and evaluation of test results were time
consuming. In some cases, the laborious process we
followed to validate model changes has provided us with

concrete ideas for developing tools that would dramatically

simplify certain aspects of model validation. Preliminary
work in the area of formal methods for model validation is

also very promising. Finally, we need to develop better
methods for characterizing RA's behavior with a specific set

of models, both as a way of validating those models and as a

way of explaining the models to a flight team.

Onb_ard Planning--Since the beginning of RA, on-board

planning has been the autonomy technology that most

challenges the comfort level of mission operators.

Commanding a spacecraft with high-level goals and letting

it autonomously take detailed actions is very tar from the

traditional commanding approach with fixed-time sequences

of low-level commands. We believe that during RAX the

flawless demonstration of on-board planning has provided a

powerful existence proof of the feasibility of the approach.
Our own discomfort with the discrepancy between tested

behavior and in-flight behavior of PS during RAX was a

surprising mirror of the objections of the critics of

autonomy.

Conclusion: It is difficult to move past the mindset of

expecting complete predictability from the behavior of an

autonomous system. However, RAX has demonstrated that

the paradigm shift is indeed possible. In the case of PS

behavior during RAX, the point is not that the combination

of pictures requested by NAV had never been experienced

before, but that the problem-solving behavior that the

planner used to achieve each individual picture goal had
indeed been tested. Confidence in complex autonomous

behaviors can be built up from confidence in each individual

component behavior.

Design for Testability--System-level testing is an essential
step in flight preparation. Designing RA to simplify and

streamline system-level testing and analysis can enable
more extensive testing, thus improving robustness. In RAX,

system-level testing proved to be cumbersome. The primary
reason for this was the absence of efficient tools to generate

new mission scenarios, so that all system tests had to be
variations on the nominal scenarios. Hence, to test a

particular variation, one was forced to run a nominal
scenario up to the point of the variation, e.g., testing thruster
failures during turns required at least 6 hours, since the first
turn occurred about 6 hours into the scenario.

Conclusions: The difficulty of generating new mission
scenarios is easily addressed: a graphical tool allowing

visual inspection and modification of mission profiles, as
well as constraint checking to ensure consistency, can
dramatically simplify the construction of new mission

profiles. Such a tool is now being constructed.
Nonetheless, overall RA validation is still necessary to

ensure that RA will properly handle each new mission

profile (see below).

Systems Engineering Tools--Coding the domain models
required substantial knowledge acquisition, which is a
common bottleneck in Artificial Intelligence systems. It is

better to have the domain expert code the models directly.

Conclusion: Develop tools and simplify the modeling

languages to enable spacecraft experts to encode models
themselves. Employ iools and languages already familiar to

the experts. Organize the models around the domain

28



(Attitude Control, Power, etc.) rather than around the RA

technology (PS, EXEC, MIR).

Mission Profile Development--RA is commanded by goals

specified in a mission profile. For the experiment,
constructing the profile was a "black art" that only one or

two people on the RA team could perform. The mission

planners and operations personnel must be able to specify

goals themselves.

Conclusion: Simplify specification of goals. When

possible, use approaches already familiar to mission
planner, such as graphical timeline displays and time-

ordered listings. Provide automated consistency checking.

Adaptabilit?; to Late Model Changes--The spacecraft
requirements and operating procedures change throughout

development, and even after launch. We were unable to
encode late changes, due to the regression-testing overhead
that each change required.

Conclusions: The validation cost of model-changes must be

reduced. Some possibilities include tools to evaluate the

consequences of model changes on testing. The models
already support localized changes. Procedures are needed to
uplink and install just those changes.

Ground Tools--Ground tools ought to be developed well in

advance of the actual flight and be used as a primary means
to test and understand how to operate complex systems.

Given the late date of development of most of the ground
tools, a good many of them felt not well integrated. As a

result only the tools displaying or interpreting data in the
most obvious way were of high value.

Telemetry--In addition to an on-board textual log file
downlinked at the end of the experiment or on request, RAX

sent a stream of binary telemetry packets, one for each

significant event, that were displayed as color-coded text on
the ground. Among other things, the telemetry allowed us
to monitor all on-board communication among RAX
modules and between RAX and FSW. This proved valuable

in allowing us to quickly diagnose the anomalies that
occurred. We immediately knew that the reason RAX had
failed to turn off the ion engine was that it had stopped

executing the plan in some unanticipated manner; we knew
RAX was still running and could also rule out a plan abort

or a failure to send just one command. Similarly, we
immediately narrowed down the second anomaly to a

monitor message that was either not sent or not received.

Conclusion: Ensuring sufficient visibility on all platforms,

including in flight, requires adequate information in
telemetry. The best way to ensure this is to design the

telemetry early, and to use it as the primary, if not the only,
way of debugging and understanding the behavior of the

system during integration, test, and operations.

Team Structure for RA Model Development The RAX
team was structured horizontally along engine boundaries.

This meant that team members specialized in one of the PS,

EXEC, and MIR engines, and each team was responsible for

modeling all spacecraft subsystems for their engine. This

horizontal organization was appropriate for RAX, since it
was our first major experience in modeling spacecraft

subsystems for flight. Hence, it made sense for engine

experts to do all modeling for their engine. However, this

organization has several shortcomings. Perhaps the most

significant shortcoming was that knowledge of any one
spacecraft subsystem (e.g., attitude control, ion propulsion,
MICAS camera) was distributed across the three teams; one
needed discussions with three individuals to get a complete

understanding of how a subsystem was commanded by RA.

Conclusions: These shortcomings suggest an alternate

structuring for a future SW team. Instead of a horizontal
structure, teams might be organized vertically along

spacecraft subsystem or domain unit boundaries; e.g., a
single team would be responsible for developing all models
for ACS. This would ensure internal coherence of the

resulting model. Furthermore, since modelers would need
to understand how to use all three engines, they can make
effective decisions on how best to model a subsystem to

exploit the strengths of each engine and avoid information

duplication.

While a vertical team organization has its benefits, certain

aspects of model development intrinsically involve
managing and reasoning about global constraints, e.g.,

power allocation strategies, system-level fault protection.
Hence, it is important to involve systems engineers to

develop these global strategies.

Answers to a Project Manager's questions

In August 1997, after a meeting between the RA team and

DS1 project management, we asked David Lehman, DSI
project manager, what the RA team needed to do to
convince the project manager of a hypothetical future
science mission to adopt RA. Lehman responded with a

series of questions that a project manager would ask if she
was just starting a new science mission development. We

thought that answering those questions after RAX would be
a good way to summarize our current understanding of the
technology. Also, the reader should keep in mind that these

answers apply as well to other software frameworks
comparable to RA in functionality and approach.

I. What does RA do to make my life easier?

It does four things:

• It makes possible to operate with a high level of
autonomy during more phases of a mission outside

of critical sequences.

• It provides a framework that facilitates the
translation of system engineering requirements into

operational code during the development phase of a
mission.
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The RAX experience shows that RA can indeed

operate autonomously and respond robustly to

likely anomalies without intervention from a
ground team and the associated delay due to round

trip light time, diagnosing the problem, creating a

command sequence, and validating it. This can
translate in lower operational costs and improved
science.

RA can reduce the need for communication with

ground. This means less time on the highly
subscribed DSN and further cost reductions..

Is RA a new technology?

RA in a novel integration of three technologies and

their application to spacecraft is also new. Each of the
component technologies in RA is an AI technology

with a long history. Theoretical papers exist that
demonstrate strong formal properties of some RA

components [9][11]. Significant applications exist for
each of the technology components. The most

significant risk that was addressed by the overall RA
develol_ment was the integration of the three

technologies into a highly-autonomous agent. We
believe that RAX demonstrates that successful

integration.

Why is RA the best thing to do in order to make the

spacecraft have autonomous operations?

Other systems exist that are comparable with some
subset of the capabilities provided by RA but they

typically do not integrate all aspects of RA. For
example, we are not aware of any operational software

for autonomous agents that contains on-board planning
and scheduling system.

4. One of the problems with FSW is that the FSW team is

at the end of the "requirements food chain". Late
requirements to FSW in turn results in increased costs
and wasted efforts in the beginning of the project. With

RA, we have to put into the code more stuff, like the
models of the hardware and how we want the

spacecraft to operate. Therefore this requirement
shouM further exacerbate the standard FSW problem of

the past. How do we fix that?

Indeed, coding RA models requires a substantial up-
front system engineering effort. The advantage of the
declarative approach is that the impact of late model

changes is lower as compared to conventional flight
software. Because of their abstract nature, the vast

majority of RA models remained completely valid and

operational throughout the project.

5. FSW is hard to test. FSW + RA should be even harder

to test? How do we fix that?

The RAX experience confirms that testing FSW is hard.

The bug that was found during flight shows that more
attention and effort needs to be spent in validating the
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basic engines. The validation cost is well worth the
effort because the engines are the components that can

be reused over a large number of missions.

With respect to the capabilities provided by the domain
models, our experience shows that testing of RA can be

successfully layered. Testing RA can be separated from

testing FSW. Also, internally to RA capabilities at
different levels of abstraction can be separated, taking

advantage of the different requirements of each layer.

For example, the low-level, real-time capabilities

require testing on the slower real-time testbeds, while
the higher-level functionalities can undergo extensive

testing on cheaper and more easily available
workstations.

With respect to coverage of possible RA behaviors, the
experience is that the larger the space of possible
combination of parameters and the higher the number

of possible interactions between subsystems, the harder

it is to guarantee that RA will work nominally under all
circumstances. This is not surprising. Restricting

harmful interaction by design is the standard problem
that needs to be addressed by system and fault-

protection engineers in a mission. RA does not make
the problem go away. However, during development
RA can be used in simulation to provide a useful tool to

explore system behavior under stress situations. This
could help detecting and fixing potential problems with
constraint interactions that are difficult to identify

otherwise.

. Mission operation is a big deal, but most projects do
not think about it until late in the development. Does

RA offer any benefits here ?

RA operates a spacecraft by generating plans that meet

goals and flight rules. The development of goals and
flight rules is intrinsic to RA development and forces
issues to be worked hand in hand with flight software.

The result is a tighter integration between mission

operations and flight software, which is a good thing.

. What parts of the operations phase is RA best suited

for? Normal cruise phase when nothing is happening,
flying around something when we are out of sight from
the DSN? Do ! need RA during the whole mission, or
should i use it just during some critical phases of the
mission, like an orbit insertion?

In principle, RA can support all phases of a mission.
This does not mean that all of its component

technologies are suited for all phases. For example, the

performance of the current implementation of PS J
makes it unsuitable for closed-loop use with tight

response times (seconds to a few minutes). However,
PS could be very valuable for scheduling competing

3The RAX plans consisted of 15-25 executable activities,
50-80 tokens and 90-134 constraints. They took 50-90

minutes to generate using about 25% of the RAD6000 CPU.



observation of different levels of fi_r a long-term,

observatory mission. In these situations, the conditions
are more similar than those demonstrated in RAX,

where the next plan can be generated while the current

one is executing.

RAX demonstrated that RA is viable during mission

cruise phase. Although this was done on a reduced
model of the spacecraft, we believe that the scaling up
factors in this case should be linear and are within the

reach of current RA technology. With respect to the
potential use during a critical phase, EXEC's event-
driven, conditional execution and MIR's model-based

fault-protection are best suited for on-board use. Also,

even within its current performance characteristics, PS
could be useful during the design phase of the scripts to

be executed by RA. RAX gives some evidence that this
is possible but the ultimate demonstration of these

capabilities will require more work.

FUTURE APPLICATIONS

Future work regarding Remote Agent can be divided into
three categories: fundamental improvements in the

capabilities of its components, improvements in usability or
deployability, and upcoming demonstrations or applications.

Since the experiment a significant effort has gone into basic
research to improve future iterations of Remote Agent. For

example, more capable version of Livingstone has been
developed that better handles ambiguity when tracking the
state of the spacecraft. Livingstone now tracks a number of

most likely states the spacecraft could be in, given the
observations it has received thus far. If new observations

invalidate the possible states MIR considered most likely, it

re-analyzes the commands that have been given and the

possible failures in order to determine which previously
unlikely states now explain the unexpected observations.

PS has a number of efforts underway to improve the

underlying software implementation - it now has a new
modular software architecture which allows plugging in of
various search techniques in the engine, work is underway
in model analysis which will allow early detection of

domain model inconsistencies, analysis of static models is
also being' undertaken to automatically generate search

control instrumentation. The latter approaches will allow
rapid prototype development of planner models by non-
technologists using incremental model development via

"what-if" analysis to vastly reduce development costs. It
will also provide mission staff with a better understanding

of how autonomy architectures will fit into the overall
design of FSW.

Other efforts are also in place to redesign the system
architecture to allow EXEC access to the planner temporal
database and algorithms. A unified modeling language is

being developed with cleaner semantics to allow EXEC to

respond to exogenous events more rapidly.

The architectural themes pioneered in Remote Agent are

gaining more general acceptance in the flight software and
mission operations communities [19]. Applying RA to the

DS I spacecraft provided a wealth of practical lessons about
what was needed to create a sustainable autonomy

engineering process and make this technology usable for

main-line mission development and operations. PS and MIR
have been re-architected, modularized and implemented in

C++ rather than Lisp. These next-generation versions are in

alpha testing at the date of this report. EXEC is expected to
be re-architected and implemented in C by the end of

calendar year 2000. The RA team is now developing tools

for graphically creating and debugging models, for
automating much of the integration of RA with traditional

flight software, and for allowing humans and autonomous
software to interact more easily. The team is collaborating
with software verification researchers at NASA Ames

Research Center and Carnegie-Mellon University to allow
certain Remote Agent models to be analyzed to prove they
cannot recommend undesired behavior. In short these

research and development efforts are designed to make RA

and similar technologies more capable, easier to use, and
easier to test and validate.

Remote Agent technology is successfully being transferred
beyond the original team and several groups are currently

building prototypes with Remote Agent in order to evaluate
it. At NASA's Kennedy Space Center, Remote Agent

applications are being developed to evaluate RA for
missions involving in-situ propellant production on Mars on
the 2003 lander or a future piloted mission. Applications for

shuttle operations are being pursued as well. At the Jet
Propulsion Laboratory, RA is being evaluated as the
baseline autonomy architecture for the Origins Program

Interferometry Instruments and is being used in the JPL
interferometry testbed. The New Millennium Program's

Deep Space Three, a space-based interferometry mission
which includes two or three spacecraft cooperating to take
science observations, may be one early customer of this

development. At Johnson Space Center, components of
Remote Agent are being integrated into an ecological life

support testbed for human missions beyond Earth orbit. At
Ames Research Center, Remote Agent technology is being

incorporated into software for more robustly controlling

planetary rovers. Working with Orbital Sciences
Corporation, Ames is working to demonstrate Remote

Agent as it applies to streamlining the checkout and
operation of a reusable launch vehicle. This demonstration
will fly on the X-34 vehicle. A similar experiment will be
flown on the X-37 vehicle in collaboration with Boeing.
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Appendix A: Telemetry Channels
The bulk of RAX monitoring and validation during the experiment was from the RAX telemetry on APID 9 & I0, channels

W-500 to W-570, and the downlinked log files.

Channel

W-500 - W-570
P-0300

APID 9 & 10
APID 45

Mnemonic

(RAX channels)

LPE_PASM_mgr
Monitored RAX behavior. Packets were in a RAX-specific format.

Log files downlinked after the experiment (plan files and detailed execution trace).

The following channels were also activated for RAX:

Channel Mnemonic
F- !048 FaultEnaStat

F- 1052 BusSCstatus

F- 1055 IPS_SCstatus
F- 1057 PDS_SCstatus

F- 1058 ACS_SCstatus
F- 1060 RAX_SCstatus
F- 1063 BusGDstatus

F- 1066 IPS GDstatus

F- 1068 PDU_GDstatus
F- 1069 ACS GDstatus
F- 1071 RAX_GDstatus

D-0 !49 buf_pkt_09
D-0150 sent_pkt_09
D-0165 buf__pkt_ 10

D-O 166 sent_pkt_ 10
F-0716 - F-0727

Appendix B: DS1 Technology Validation Power On Times

• The Remote Agent Experiment first ran from May 17, 1999, 5am PST to Wed 5/18/99, 7pm PST.

• It ran again from May 21, 1999, 7:15am PST to 1:30 pm PST (RAX_STOP).

• The log files were downlinked by May 21, 1999 4:00 PST.

Appendix C: Acronym Definitions

AutoNAV ........... Autonomous Navigation subsystem of FSW

ACS .................... Attitude Control Subsystem of FSW

APE .................... Attitude'Planning Expert subsystem of FSW

ARC .................... Ames Research Center

CCB .................... Change Control Board

CPU .................... Central Processing Unit (computer)

DDL .................... PS Domain Description Language

DSI ..................... Deep Space One spacecraft

DSN .................... Deep Space Network
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ESL.....................ExecutiveSupportLanguage
EXEC.................RemoteAgentSmartExecutive

FTE.....................FullTimeEquivalent

FSW....................DS1FlightSoftware
GMT...................GreenwichMeanTime

HGA...................HighGainAntenna
HSTS..................HeuristicSchedulingTestbedSystem

IPS......................IonPropulsionSystem

JPL......................JetPropulsionLaboratory
MICAS...............MiniatureIntegratedCameraAndSpectrometer
MI.......................ModeIdentificationcomponentofMIR

MIR....................RemoteAgentModeIdentificationandRecoverymodule(Livingstone)

MR......................ModeRecoverycomponentofMIR
MM.....................RemoteAgentMissionManagermodule
NASA.................NationalAeronauticsandSpaceAdministration
NewMAAP.........NewMillenniumAutonomyArchitecturerapidPrototype
OD......................OrbitDetermination

OPNAV..............OpticalNavigationModulesubsystemFSW
PASM.................PowerActuationandSwitchingModule
PEF.....................PredictedEventsFile

PR.......................ProblemReport
PS.......................RemoteAgentPlanner/Scheduler

RA......................RemoteAgent
RAX....................RemoteAgentExperiment

RAXM................RAXManager
RCS....................ReactionControlSystem
RT.......................RemoteTerminal

TDB....................HSTSTemporalDatabase
TVC....................ThrustVectorControl
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